PETROLEUM COKE: A 96-HOUR TOXICITY TEST WITH THE FRESHWATER ALGA (Selenastrum capricornutum)

AMENDED FINAL REPORT

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-114

OECD GUIDELINE 201 EU DIRECTIVE 92/69/EEC, METHOD C.3. U.S. EPA OPPTS NUMBER 850.5400

AUTHORS:

STUDY INITIATION DATE: April 28, 2004

STUDY COMPLETION DATE: June 22, 2006

AMENDED REPORT DATE: April 10, 2007

SUBMITTED TO

American Petroleum Institute 1220 L Street, N.W. Washington DC 20005

Wildlife International, Ltd.

8598 Commerce Drive Easton, Maryland 21601 USA (410) 822-8600

Page 1 of 173

-2-

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

SPONSOR: American Petroleum Institute

TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga (Selenastrum

capricornutum)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-114

STUDY COMPLETION: June 22, 2006

AMENDED REPORT DATE: April 10, 2007

This study was conducted in compliance with Good Laboratory Practice Standards as published by TSCA Good Laboratory Practice Standards (40 CFR Part 792) (1) and OECD Principles of Good Laboratory Practice, (ENV/MC/CHEM (98) 17) (2), with the following exceptions:

The characterization of the test and reference substances, and the stability of the substances under conditions of storage at the test site, were not determined in compliance with Good Laboratory Practice Standards.

Periodic analyses of well water for potential contaminants were performed using a certified laboratory and standard U.S. EPA analytical methods, but not under Good Laboratory Practice Standards.

STUDY DIRECTOR:

	<u> 4/10/07</u> Date
SPONSOR: American Petroleum Institute, by:	-
	Date 7/26/2007

- 3 -

QUALITY ASSURANCE STATEMENT

This study was examined for compliance with Good Laboratory Practice Standards as published by TSCA Good Laboratory Practice Standards (40 CFR Part 792) (1) and OECD Principles of Good Laboratory Practice, (ENV/MC/CHEM (98)17) (2). The dates of all inspections and audits and the dates that any findings were reported to the Study Director and Laboratory Management were as follows:

		DATE REPO	RTED TO:
ACTIVITY:	DATE CONDUCTED:	STUDY DIRECTOR:	MANAGEMENT
Protocol	April 20, 2004	April 20, 2004	: April 29, 2004
Test Substance Preparation	Mach 23, 2005	March 23, 2005	March 28, 2005
Matrix Fortification	April 4, 2005	April 4, 2005	April 5, 2005
Biological Data and Draft Report	May 5 & 6, 2005	May 6, 2005	May 12, 2005
Analytical Data and Draft Report	May 6, 9-11, 2005	May 11, 2005	May 12, 2005
Final Report	June 19, 2006	June 19, 2006	June 22, 2006
Amended Report	April 9, 2007	April 9, 2007	April 9, 2007

All inspections were study-based unless otherwise noted.

1/10/2007 Date

-4-

AMENDED REPORT APPROVAL

SPONSOR: American Petroleum Institute

TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga (Selenastrum

capricornutum)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-114

This report was reviewed by the individuals involved in the conduct and management of the study, and was found to be an accurate reflection of the methods used, data collected and results of the study.

STUDY DIRECTOR:

	H10/07-
	Date
	4-10-07
	Date
	April 10, 2007 Date
WILDLIFE INTERNATIONAL, LTD. MANAGEMENT:	• • • • • • • • • • • • • • • • • • •
	10 April 07
	Date //

TABLE OF CONTENTS

Title/Cover Page	1
Good Laboratory Practice Compliance Statement	2
Quality Assurance Statement	3
Report Approval	
Table of Contents	5
Summary	9
Introduction	11
Objective	11
Experimental Design	
Materials and Methods	
Test Substance	
Test Organism	
Culture Medium	
Test Apparatus	
Environm ental Conditions	
Preparation of Test Concentrations.	
Analy tical Sampling	
Analytical Method by HPLC	
Analytical Method by ICP-AES	18
Inoculation of Test Chambers	
Algal Growth Measurements and Observations	20
Recovery Phase	
Conditions for the Validity of the Test	
Statistical Analyses	21
Results and Discussion	22
Measurement of Test Concentrations	22
Observations and Measurements	22
Conclusions	23
Defende	2

- 6-

TABLE OF CONTENTS (Continued)

TABLES AND FIGURES

Table 1.	Measured Concentrations of Naphthalene Analyzed by HPLC/UV	25
Table 2.	Measured Concentrations of Acenaphthylene Analyzed by HPLC/UV	26
Table 3.	Measured Concentrations of 1-Methylnaphthalene Analyzed by HPLC/UV	27
Table 4.	Measured Concentrations of 2-Methylnaphthalene Analyzed by HPLC/UV	28
Table 5.	Measured Concentrations of Fluorene Analyzed by HPLC/UV	29
Table 6.	Measured Concentrations of Acenaphthene Analyzed by HPLC/UV	30
Table 7.	Measured Concentrations of Phenanthrene Analyzed by HPLC/UV	31
Table 8.	Measured Concentrations of Anthracene Analyzed by HPLC with Fluorescence Detection	32
Table 9.	Measured Concentrations of Fluroanthrene Analyzed by HPLC with Fluorescence Detection	33
Table 10.	Measured Concentrations of Pyrene Analyzed by HPLC with Fluorescence Detection	34
Table 11.	Measured Concentrations of Chyrsene Analyzed by HPLC/UV	35
Table 12.	Measured Concentrations of Benzo(a)anthracene Analyzed by HPLC with Fluorescence Detection	36
Table 13.	Measured Concentrations of Benzo(b)fluoranthene Analyzed by HPLC with Fluorescence Detection	37
Table 14.	Measured Concentrations of Benzo(k)fluoranthene Analyzed by HPLC with Fluorescence Detection	38
Table 15.	Measured Concentrations of Benzo(a)pyrene Analyzed by HPLC/UV	39
Table 16.	Measured Concentrations of Dibenz(a,h)anthracene Analyzed by HPLC with Fluorescence Detection	40
Table 17.	Measured Concentrations of Indeno(1,2,3-cd)pyrene Analyzed by HPLC/UV	41

TABLE OF CONTENTS (Continued)

Table 18.	Fluorescence Detection	42
Table 19.	Measured Concentrations of Dibenzo(a,e)pyrene Analyzed by HPLC with Fluorescence Detection	43
Table 20.	Measured Concentrations of Arsenic Analyzed by ICP-AES	44
Table 21.	Measured Concentrations of Copper Analyzed by ICP-AES	45
Table 22.	Measured Concentrations of Iron Analyzed by ICP-AES	46
Table 23.	Measured Concentrations of Nickel Analyzed by ICP-AES	47
Table 24.	Measured Concentrations of Selenium Analyzed by ICP-AES	48
Table 25.	Measured Concentrations of Vanadium Analyzed by ICP-AES	49
Table 26.	Measured Concentrations of Sulfur Analyzed by ICP-AES	50
Table 27.	Tem perature Measurements	51
Table 28.	pH Measurements	52
Table 29.	Light Intensity Measurements	53
Table 30.	Mean Cell Density and Percent Inhibition	54
Table 31.	Mean Area Under the Growth Curve (Biomass) and Percent Inhibition	55
Table 32.	Mean Growth Rate and Percent Inhibition	56
Table 33.	Estimates of the EL50, E _b L50 and E _r L50 Values Over the 96-Hour Exposure Period	57
Figure 1.	Concentration-response curve for <i>Selenastrum capricornutum</i> exposed to a 1000 mg/L WAF solution of Petroleum Coke for 96 hours, expressed as cell density	58

- 8 -

TABLE OF CONTENTS (Continued)

APPENDICES

Appendix 1.	Exploratory Non-GLP Rangefinding Toxicity Test with Petroleum Coke	59
Appendix 2.	Protocol, Protocol Amendments and Deviations	62
Appendix 3.	Test Article Selection	89
Appendix 4.	AVEKA, Inc. Particle Processing Report	100
Appendix 5.	Laboratory Characterization of 2 mm Particle Size Petroleum Coke	108
Appendix 6.	Freshwater Algal Medium with Supplemental Sodium Bicarbonate	114
Appendix 7.	Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water	115
Appendix 8.	Results of WAF Equilibration Trial	117
Appendix 9.	Analysis of Organic Constituents of Petroleum Coke in Freshwater Algal Medium	118
Appendix 10.	Analysis of Inorganic Constituents of Petroleum Coke in Freshwater Algal Medium	146
Appendix 11.	Cell Density By Replicate Over the 96-Hour Exposure Period	168
Appendix 12.	Area Under the Growth Curve (Biomass) By Replicate Over the 96-Hour Exposure Period	169
Appendix 13.	Growth Rate By Replicate Over the 96-Hour Exposure Period	170
Appendix 14.	Personnel Involved in the Study	171
Appendix 15.	Report Amendment	172

- 9 -

SUMMARY

SPONSOR: American Petroleum Institute

TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga (Selenastrum

capricornutum)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-114

TEST SUBSTANCE: Petroleum Coke

GUIDELINES: OECD Guidelines for Testing of Chem icals, 201: Algal, Growth Inhibition Test;

Official Journal of the European Com munities No. L383 C.3.: *Algal Inhibition Test*; U.S. EPA Series 850 – Ecological Effects Test Guidelines OPPTS Number

850.5400: Algal Toxicity Tiers I and II

TEST DATES: Study Initiation: April 28, 2004

Experimental Start (OECD): March 23, 2005 Experimental Start (EPA): March 24, 2005 Biological Termination: March 28, 2005 Experimental Termination: April 5, 2005

LENGTH OF EXPOSURE: 96 Hours

TEST ORGANISMS: Freshwater Alga (Selenastrum capricornutum)

SOURCE OF TEST ORGANISMS: Wildlife International, Ltd. Cultures

Easton, Maryland 21601

TEST CONCENTRATIONS: <u>Nominal WAF Loading Rate</u>

Negative Control mg/L

- 10-

SUMMARY (Continued)

RESULTS: Based on nominal WAF loading rate:

Cell Density:

72-hour EL50 >1000 mg/L WAF 95% confidence limits: Not Calculable

96-hour EL50: >1000 mg/L WAF 95% confidence limits: Not Calculable

72-hour NOELR: <1000 mg/L WAF

96-hour NOELR: <1000 mg/L WAF

RESULTS: Based on nominal WAF loading rate:

Area Under the Growth Curve:

72-hour E_bL50 : >1000 mg/L WAF 95% confidence limits: Not Calculable

96-hour E_bL50: >1000 mg/L WAF 95% confidence limits: Not Calculable

72-hour NOELR: <1000 mg/L WAF

96-hour NOELR: <1000 mg/L WAF

RESULTS: Based on nominal WAF loading rate:

Growth Rate

72-hour E_rL50: >1000 mg/L WAF 95% confidence limits: Not Calculable

96-hour E_rL50: >1000 mg/L WAF 95% confidence limits: Not Calculable

72-hour NOELR: <1000 mg/L WAF

96-Hour NOELR: <1000 mg/L WAF

INTRODUCTION

Wildlife International, Ltd conducted an algal toxi city test to determine the effects of a water accommodated fraction of petroleum coke on the freshwater alga *Selenastrum capricornutum*, for American Petroleum Institute at the Wildlife International, Ltd. aquatic toxicology facility in Easton, Maryland. Petroleum coke is defined as a the product formed by subjecting the heavy tar-like residue remaining following oil refining to high tem peratures and pressures. It consists of primarily elemental carbon with considerably smaller amounts of hy drocarbons, sulfur and trace amounts of heavy metals. The in-life exposure phase of the test was conducted from March 24 to March 28, 2005. A copy of the final report and all original raw data generated at Wildlife International, Ltd. are filed under Project Number 472A-114 in archives located on the Wildlife International, Ltd. site.

OBJECTIVE

The objective of the study was to evaluate the toxicity of a water accommodated fraction of petroleum coke to the freshwater alga, *Selenastrum capricornutum*, during a 96-hour exposure period in a sealed exposure system.

EXPERIMENTAL DESIGN

The freshwater alga, Selenastrum capricornutum, was exposed to a water accommodated fraction (WAF) of petroleum coke prepared at a loading rate of 1000 mg/L and a negative control for 96 hours. For this test, the term loading rate means the total am ount of test substance added to dilution water volume (mg/L) to achieve the respec tive WAF solution. Because petroleum coke is a multi-component substance not fully soluble in wa ter, WAFs are an acceptable means of creating exposure solutions for ecotoxicity tests (3). The nom inal test concentration was selected in consultation with the Sponsor and was based upon the e results of a range-finding test (Appendix 1). Twenty-four closed bottle replicates were m aintained for the treatment and control group. Water samples were collected at test initiation, on Day 3 and test term ination for analy sis for selected constituents of petroleum coke. Because petroleum coke is a com plex mixture of elem ental carbon and low levels of hy drocarbons and metals, several poly aromatic hy drocarbons and m etals were selected to be monitored in the test solutions during the algal test. The components selected for measurement were those that are either of ecologi cal concern or were known to occur in petroleum coke in amounts that might be measured in a WAF so lution. Those constituents of interest included the following:

DATE	M / 1 10 10
РАН	Metals and Sulfur
Acenaphthene Nickel	
Acenaphthylene Vanadium	
Anthracene Iron	
Benzo(a)anthracene Copper	
Benzo(a)pyrene Selenium	
Benzo(b)fluoranthene Arsenic	
Benzo(g,h,i)perylene Sulfur	
Benzo(k)fluoranthene	
Chrysene	
Dibenzo(a,e)pyrene	
Dibenz(a,h)anthracene	
Fluoranthene	
Fluorene	
Indeno(1,2,3-cd)pyrene	
Naphthalene	
Phenanthrene	
Pyrene	
1-Methylnaphthalene	
2-Methylnaphthalene	

At test initiation, an inoculum of the algal cells was prepared at a concentration of approximately 1.5 X 10⁶ cells/mL. The concentration of algal cells in the inoculum was verified and 1.0 mL was added to each test cham ber to achieve a nominal concentration of approximately 5,000 cells/mL. Sam ples were collected from six replicate test cham bers at each 24 hour interval to determine cell densities (i.e, replicates A, B, C, D, E and F at 24 hours, replicates G, H, I, J, K and L at 48 hours, replicates M, N, O, P, Q and R at 72 hours, and replicates S, T, U, V, W and X at 96 hours). Cell densities were measured for each replicate and were used to calculate area under the growth curve and growth rates. Percent inhibition values relative to the control were calculated for each parameter at 24, 48, 72 and 96 hours. EL50 values were estimated based upon percent inhibition measured in the biological parameters for each sam pling interval. The no-observed-effect-loading rate (NOELR) was determed at 72 and 96 hour shaded upon evaluation of the concentration-response pattern and the results of statistical analyses.

MATERIALS AND METHODS

The study was conducted in accordance to the procedures outlined in the protocol, "Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga (*Selenastrum capricornutum*)" (Appendix 2). The protocol was based on procedures outlined in OECD Guidelines for Testing of Chemicals, 201 *Algal, Growth Inhibition Test* (4); Official Journal of the European Communities No. L383 C.3. *Algal Inhibition Test* (5); and the U.S. Environmental Protection Agency Series 850 – Ecological Effects Test Guidelines OPPTS Number 850.5400: *Algal Toxicity Tiers I and II* (draft) (6).

Test Substance

The test substance was green petroleum coke (CAS Number 64741-79-3). The test substance was received from Experimental Pathology Laboratories, Herndon, VA for API on October 7, 2003. It was assigned Wildlife International, Ltd. identification number 6485 upon receipt and was stored under ambient conditions. The test substance, bl ack pellets, was identified as 2 m m particle size Petroleum Coke (aka Milled Pellets).

The identity, strength, purity, composition (Appendix 4), storage stability, and method of synthesis, fabrication and/or derivation (Appendix 3) of each batch of the test substance and the maintenance of these records were the responsibility of the Sponsor.

Reference Substances

Purified polyaromatic hydrocarbons (PAH) were made up of components received from three manufacturers. The following reference standards were received from AccuStandard Inc. and were stored under ambient conditions:

Component	Test Substance <u>Number</u>	<u>Lot/Batch</u>	CAS <u>Number</u>	Date <u>Received</u>	Expiration <u>Date</u>	<u>Description</u>
Benzo(a)pyrene Anthracene Benz(a)anthracene	6705 6706 6707	052803MT-AC A33783 19587	50-32-8 120-12-7 56-55-3	6/07/04 6/07/04 6/07/04	6/03/07 6/03/07 6/03/07	green powder white powder colorless plates
Acenaphthylene Acenaphthene Benzo(b)fluoranthene	6708 6709 6710 6711	011504MS-AC 01915EQ 020402AG-AC 122 500MT-AC	208-96-8 83-32-9 205-99-2 191-24-2	6/07/04 6/07/04 6/07/04	6/03/07 6/03/07 6/03/07 6/03/07	yellow powder white crystal white flakes
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	6712 6713 6714	112603AG-AC 13103	207-08-9 218-01-9	6/07/04 6/08/04 6/08/04	6/03/07 6/03/07	green powder yellow powder white powder
Dibenz(a,h)anthracene Fluoranthene Fluorene	6715 6716	13246 19762 19675	53-70-3 206-44-0 86-73-7	6/08/04 6/08/04 6/08/04	6/03/07 6/03/07 6/03/07	green powder white powder white powder
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	6717 6718 6719 6720	19641 167A-A 090903AG-AC-1 09617LR	193-39-5 91-20-3 85-01-8 129-00-0	6/08/04 6/08/04 6/08/04 6/08/04	6/03/07 6/03/07 6/03/07 6/03/07	yellow powder white flakes white powder green crystal

The following reference standard was received from Cambridge-Isotope Labs and was stored under ambient conditions:

	Test					
	Substance		CAS	Date	Expiration	
Component	<u>Number</u>	Lot/Batch	<u>Number</u>	Received	<u>Date</u>	<u>Description</u>
Dibenzo(a,e)pyrene 65	18	I1-7628	192-65-4	10/22/03	Not given	Solids

The following standards were received from ChemService and were stored under am bient conditions:

Component	Test Substance <u>Number</u>	Lot/Batch <u>Number</u>	CAS <u>Number</u>	Date Received	Expiration <u>Date</u>	Description
2-Methylnaphthalene	6765	310-43C	91-57-6	8/03/04	9/01/08	Solid
1-Methylnaphthalene	6766	325-31A	90-12-0	8/03/04	5/01/09	Liquid

Analytical standards for each of the seven elements of interest were received from Spex Industries (Metuchen, N.J. 08840) and were stored under am bient conditions. All of the meaterials were 1,000 m g/L Spex CertiPrep plasma standards in 2% HNO 3, with the exception of the sulfur standard which was a 10,000 m g/L preparation in water. The following tabulation summarizes pertinent data for each analytical standard:

	1	_	
-	-1	Э.	-

Component	Test Substance <u>Number</u>	Lot/Batch	CAS <u>Number</u>	Date <u>Received</u>	Expiration <u>Date</u>	Description
Arsenic (As)	6543	10-06AS	7440-38-2	11/06/03	11/15/05	Clear liquid
Copper (Cu)	6544	9-183CU	7440-50-8	11/06/03	11/15/05	Blue liquid
Iron (Fe)	6545	9-184FE	7439-89-6	11/06/03	11/15/05	Clear Liquid
Nickel (Ni)	6546	10-29NI	7440-02-0	11/06/03	11/15/05	Blue liquid
Selenium (Se)	6547	10-31SE	7782-49-2	11/06/03	11/15/05	Clear Liquid
Sulfur (S)	6890	S9-51S	7704-34-9	10/18/04	10/15/05	Liquid
Vanadium (V)	6549	10-88V	7440-62-2	11/06/03	11/15/05	Yellow Liquid

Test Organism

The freshwater green alga, *Selenastrum capricornutum* Printz (UTCC 37), was selected as the test species for this study. The species is representative of an important group of freshwater algae, and was selected for use in the test based upon a past history of use, and ease of culturing in the laboratory. Original algal cultures were obtained from the University of Toronto Culture Collection, and had been maintained in culture medium at Wildlife International, Ltd., Easton, Mary land. Algal cells used in this test were obtained from Wildlife International, Ltd. cultures that had been actively growing in culture medium for at least two weeks—prior to test initiation. The culture was last transferred to fresh medium three days prior to test initiation. The negative control organism s were expected to exhibit exponential growth over the 96-hour exposure period. Exponential growth phase, defined as the period of growth where the algal cells are dividing at a constant rate, is indicated by the linear section of the growth curve (Figure 1).

Culture Medium

The algal cells were tested in freshwater algal medium with supplemental sodium bicarbonate (6,7). Stock nutrient solutions were prepared by adding reagent-grade chem icals to purified well water (NANOpure [®]). The test medium was prepared by adding the appropriate volum es of stock nutrient solutions to NANOpure [®] water (Appendix 6). The pH of the m edium was adjusted to 7.5 ± 0.1 using 10% HCl and 0.1N NaOH as needed and the m edium was sterilized by filtration $(0.22 \mu m)$ prior to use. Analy ses were perform ed at least once annually to determ ine the concentrations of selected organic and inorganic constituents in the well water. The results of analy ses performed to measure the concentrations of selected contaminants in well water used by Wildlife International, Ltd. are presented in Appendix 7.

Test Apparatus

Test cham bers were sterile, 300-m L glass BOD bottles with glass stoppers and were completely filled with medium. Each test cham ber contained two glass m arbles to facilitate m ixing. The test cham bers were labeled with the project num ber, loading rate and replicate, and were indiscriminately positioned daily on a m echanical shaker in an environm ental chamber designed to maintain the desired test tem perature throughout the test. The test cham bers were shaken continuously at 100 rpm. The shaker tables were ch ecked daily during the test to ensure the proper setting.

Environmental Conditions

Test flasks were held in an environm ental cham ber at a tem perature of $24 \pm 2^{\circ}$ C. The temperature of a container of water adjacent to the test flasks in the environm ental cham ber was recorded twice daily during the test using a liquid-in-glass thermometer.

The algae were held under continuous cool-w hite fluorescent lighting throughout the test. The target light intensity was 4300 ± 430 lux. Light intensity was measured at five locations on each shaker table daily during the test. Light intens ity was measured using an SPER Scientific Model 840006C light meter.

The pH of the m edium prepared for the treatm ent and control group was m easured at test initiation, and at approxim ately 24 hour intervals thereafter using a Fisher Accum et Model 525 pH meter. Samples for pH measurement at test initiation were collected from the individual batches of test solution prepared for the treatment and control group. At 24, 48, 72 and 96 hours, samples of test solution were collected from pooled replicates sacrificed at each time interval.

Preparation of Test Concentrations

The single, limit test concentration was a WAF prepared at a petroleum coke loading rate of 1000 mg/L. The test substance was added to 9 L of algal growth medium in a 9.5-L glass vessel and stirred for 24 hours by means of a Teflon® coated stir bar on a magnetic stir plate. Stirring speed was adjusted to produce a vortex depth of approximately 30% of the test solution height. The duration of the mixing period was established during an explorat ory WAF equilibration test (Appendix 8). After mixing, the WAFs were allowed to settle for approximately 1 hour.

Analytical Sampling

Samples of the test solutions were collected at approxim ately 0, 72 and 96 hours to measure concentrations of soluble components of the test substance. Samples at test initiation were collected at mid-depth from the individual batches of test solution prepared for the treatment and control group prior to addition of the algae. The 72-hour samples were collected from pooled replicates M, N, O, P, Q and R of the treatment and control group. At test term ination, samples were collected from pooled replicates S, T, U, V, W and X of the treatment and control group. All samples were stored until the end of the test. Sam ples collected of organic analysis were preserved by storing refrigerated with zero headspace. Samples collected for inorganic analysis were preserved by the addition of sufficient nitric acid to achieve a final acid concentration of 2%.

Analytical Method by HPLC

The m ethod used for the analy sis of the m ethod verification sam ples was based upon methodology developed by Wildlife International, Lt d. (8). The analy tical m ethod consisted of diluting the samples in freshwater algal m edium, as necessary, and analyzing by direct injection high performance liquid chromatography (HPLC) with either UV detection at 220 nm or fluorescence detection at 340 nm to 425 nm.

Concentrations of each PAH compound in the fortified samples were determined using an Agilent Model 1100 High Perform ance Liquid Chromatograph, equipped with either an Agilent Series 1100 Variable Wavelength Detector or a Jasco Model FP-1520 Fluorescence Detector. Chromatographic separations were achieved using a YMC Pack ODS-AM colum n (150 mm x 4.6 mm, 3 µm particle size). A method flow chart is provided in Appendix 9.1 and instrumental parameters for the analysis of PAH components are summarized in Appendix 9.2.

Five calibration standards of PAH, ranging in concentration from 5.00 to $50.0~\mu g/L$, were prepared prior to the test using a stock solution of PAH analytical standards in methanol (Appendix 9.3). The calibration standards were analyzed with each sample set. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The concentration of PAH in the samples was determined by substituting the peak area responses of the samples into the applicable linear regression equation.

The method limit of quantitation (LOQ) was defined as $5.00~\mu g/L$, calculated as the product of the concentration of the lowest calibration standard ($5.00~\mu g/L$) and the dilution factor of the matrix blank sam ples (1.00). One matrix blank sam ple was analy zed with each sam ple set to determine possible interferences. No interferences were observed at or above the LOQ during the sample analyses.

Samples of freshwater algal medium were fortified at 10.0, 40.0 and $100~\mu g/L$ using a stock solution of PAH analy tical standard in m ethanol (Appendix 9.3), and were analyzed concurrently with the test samples. The measured concentrations for the matrix fortification samples ranged from 86.3 to 109% of fortified concentrations (Tables 1 through 19).

Representative calibration curves are presented in Appendices 9.4 through 9.22. Representative chrom atograms of low and high-level calibration standards are presented in Appendices 9.23 and 9.24, respectively. Representative chromatograms of a freshwater algal medium matrix blank sam ple and a matrix fortification sam ple are presented in Appendices 9.25 and 9.26, respectively. A representative chromatogram of a test sample is presented in Appendix 9.27.

Analytical Method by ICP-AES

The analytical method used for the analysis of As, Se, Fe, Ni, Se, V and S in the WAF samples was based upon methodology developed by Wildlife International, Ltd. (9). The analytical method consisted of acidifying the samples 2% by volume with concentrated nitric acid and direct injection into the ICP-AES system. Concentrations of As, Cu, Fe, Ni, Se, S and V in the samples were determined using a Perkin-Elmer Optima 3000 DV ICP-AES configured in axial view mode and equipped with a Cetac U-5000AT ⁺ Ultrasonic Nebulizer (sample introduction). Simultaneous measurements were made for six of the seven elements (As, Cu, Fe, Ni, Se and V). For sulfur, a single element method was employed due to the need for higher concentration-level calibration standards. A method flowchart is provided in Appendix 10.1 and instrumental parameters for the analysis of the seven elements are summarized in Appendix 10.2.

Multi-element calibration standards were analy zed with the WAF samples. Preparations of stock and calibration standard solutions are deta illed in Appendix 10.3. The calibration standard series was injected at the beginning and end of each analytical run. In addition, a standard was injected following a maximum of five sample analyses. For a given injection of a sample (including standards), the ICP-AES instrument integrated the steady-state emission signal at designated emission wavelengths for a m ethod-specified period (read tim e). The net integrated intensity automatically corrected by subtraction of the mean corrected intensity of the calibration blank (determined at sequence initiation). The m easurement cy cle was autom atically repeated two additional times during the sample injection (read re plicates). The m ean of the three m easurements produced a m ean corrected intensity for each monitored element in the sam ple. Linear regression equations for each monitored element were generated using mean corrected intensities versus the respective concentrations of the elem ent in the calibration standards. Representative calibration curves for As, Cu, Fe, Ni, Se, S and V are presented in Appendices 10.4 – 10.10. The concentrations of each of the seven elements in the WAF same ples were calculated by substituting their mean corrected intensities into the a pplicable linear regression equation, and apply ing the appropriate dilution and unit conversion factors. Representa tive em ission spectra of low- and high-level calibration standards are presented in Appendices 10.11 - 10.13. An example calculation for a study sample is provided in Appendix 10.14.

A matrix blank was analy zed for each component concurrent with the study samples to determine possible interferences. No interferences were observed at or above the limit of quantitation (LOQ) during the sample analyses (Appendices 10.15 – 10.17). A sample of freshwater algal media was fortified at 2X (S) or 2.5X (As, Cu, Fe, Ni, Se and V) the method LOQ for each element and analyzed for each component concurrent with the study samples using the combined stock and the sulfur reference standard. Results are presented in Tables 20 through 26. Em ission spectra of freshwater algal media matrix blank and matrix fortification samples are presented in Appendices 10.15 – 10.17. The measured concentrations for the matrix fortification samples ranged from 87.3 to 124% of fortified concentrations (Tables 20 through 26). Representative emission spectra of a WAF test sample are presented in Appendices 10.18 – 10.20.

Inoculation of Test Chambers

Prior to test initiation, an inoculum of the algal cells was prepared in freshwater algal medium at a concentration of approximately 1.5×10^6 cells/mL. The concentration of algal cells was verified using a hemacytometer and microscope, and 1.0 mL of the inoculum was added to each test cham ber to achieve a nominal concentration of approximately 5,000 cells/mL at test initiation.

Algal Growth Measurements and Observations

Test medium samples were collected from six replicates sacrificed at each sam pling interval (i.e., replicates A, B, C, D, E and F at 24 hours, replicates G, H, I, J, K and L at 48 hours, replicates M, N, O, P, Q and R at 72 hours, and replicates S, T, U, V, W and X at 96 hours) for determination of algal cell densities. Sam ples were collected at approximately 24-hour intervals during the 96-hour exposure and were held for a maximum of nine days under refrigerated conditions sufficient to inhibit growth until cell counts could be perform ed. Cell counts were performed using a hemacytometer and microscope. The sam ples then were diluted using an electrolyte solution (Isoton®), as needed, to maintain counting accuracy. A sm all amount of each sample was loaded onto a hem acytometer and 10 grids were counted. The m ean number of cells per grid was calculated and this value was used to calculate the cell density of the sample. Using this technique, the minimum quantifiable cell density was 1,000 cells/mL.

Recovery Phase

After 96 hours of exposure, the treatm ent group exhibited visual evidence of algal growth (i.e., color in the test solution). Therefore, a recovery phase was not initiated.

Conditions for the Validity of the Test

- 1. The mean cell density in the control flasks had increased by a factor of at least 16 within three days.
- 2. While the coefficient of variance (CV) fo r the cell density in the control flasks at 96 hours was 22%, this is a criteria for an open bottle system. The growth of a closed bottle system is limited by the lack of gas exchange causing the density between replicates to be variable. Since the CV of the closed bottle sy stem was close to the requirement of an open bottle sy stem (20%), it is not considered to invalidate the study.

- 21-

Statistical Analyses

The calculation of cell densities, areas under the growth curve, growth rates and percent inhibition values, as well as all statistical analy ses, were conducted using "The SAS Sy stem for Windows", Version 8.02 (10). Area under the growth curve was calculated for each replicate of the treatment and control group at each 24-hour exposure interval using the following formula:

$$A = ((N_1 - N_0)/2)(t_1) + ((N_1 + N_2 - 2N_0)/2)(t_2 - t_1) + ... + ((N_{n-1} + N_n - 2N_0)/2)(t_n - t_{n-1})$$

where: A = Area under the growth curve

 N_o = Mean nominal number of cells/mL at t_o N_1 = Mean measured number of cells/mL at t_1 N_2 = Mean measured number of cells/mL at t_2 N_n = Mean measured number of cells/mL at t_n

 t_1 = Time of first measurement after beginning of test (hours) t_2 = Time of second measurement after beginning of test (hours) t_n = Time of n^{th} measurement after beginning of test (hours)

Growth rate was calculated for each replicate of the control and treatm ent group using the following formula:

$$\mu = \frac{\ln N_n - \ln N_o}{t_n - t_o}$$

where: $\mu = \text{Average specific growth rate}$

 N_o = Nominal cell density (cells/mL) at t_o N_n = Measured cell density (cells/mL) at t_n t_o = Time of beginning of test (hours) t_n = Time after beginning of test (hours)

Inhibition values were calculated for the 1000 m g/L WAF treatm ent group as the percent reduction in cell density , area under the growth curv e (biomass) and growth rate relative to the negative control replicates. The following formula was used:

Percent Inhibition = Mean Negative Control Response - Mean Treatment Response x 100 Mean Negative Control Response

The percent inhibition observed in the treatm ent group was used to determ ine whether the EL50 values were greater or less than the 1000 m g/L WAF loading rate. The data were evaluated for normality and hom ogeneity of variance (p=0.05) using the Shapiro-Wilk's and Levene's tests, respectively. The treatm ent group then was compared to the negative control using Dunnett's test (p=0.05). The results of the statistical analyses, as well as an evaluation of the concentration-response pattern, were used to determine the NOELR relative to each parameter at 72 and 96 hours.

RESULTS AND DISCUSSION

Measurement of Test Concentrations

Results of analyses to measure polyaromatic hydrocarbon (PAH) and metals in the WAF and control solutions are presented in Tables 1-27 and the analytical chemistry reports (Appendix 9 & 10). All measurements of PAH's and metals in control and WAF solutions were below detection limits for the methods. Therefore estimates of the EL50 and NOELR values were based on the nominal WAF loading rate of 1000 mg/L used in the test.

Observations and Measurements

At stirring initiation, the test solution appeared clear with test m aterial floating. After stirring, solutions appeared to have test m aterial floating on the surface and settling at the bottom. The test solutions were siphoned from the bottom of the mixing vessels directly into the test chambers. At each sampling interval no surface slicks were noted, however, particles were observed at the bottom of the test chambers.

Measurements of tem perature, pH and light in tensity are presented in Tables 27, 28 and 29, respectively. Tem peratures ranged from 23.0 to 23.6°C and were within the 24 \pm 2°C range established for the test. Measurements of pH in both control and WAF solutions were 7.9 on Day 0 and Day 1. On Day 2 pH measurements were 8.6 in the control and 8.3 in the 1000 m g/L WAF. On Days 3 and 4, pH m easurements in the control and 1000 m g/L WAF were 8.9 and 8.5, and 10.6 and 9.8, respectively. The pH tended to increase relative to increases in algal densities, which is ty pical for tests conducted with *Selenastrum capricornutum*. The light intensity ranged from 3870 to 4670 lux, which was within the desired range of 4300 \pm 430 lux. The shaker tables m aintained their speed of 100 rpm.

The toxicity of the petroleum coke WAF to *Selenastrum capricornutum* was determined by evaluating changes in cell density over a 96-hour exposure period. Cell densities were used to calculate areas under the growth curve (biom ass) and growth rates for each 24-hour interval of exposure. Mean cell densities, areas under the grow th curve and growth rates with the corresponding percent inhibition values are presented in Tables 30, 31, and 32, respectively. Estimates of the EL50, E_bL50 and E_rL50 are presented in Table 33. Individual replicate data for each growth param eter are presented in Appendices 11, 12 and 13, while m ean cell densities are illustrated graphically in Figure 1. Changes in m ean cell density in the negative control replicates over the 96-hour exposure period indicated that exponential growth of cells occurred in those replicates (Figure 1).

After 72 hours of exposure the percent inhimition values for cell density, area under the growth curve and growth rate in the $1000 \, \mathrm{m}$ g/L WAF treatment group were 34, 26 and 12%, respectively, relative to the negative control. Dunnett's test indicated that cell density, biomass and growth rate were significantly reduced (p < 0.05) in the $1000 \, \mathrm{m}$ g/L WAF treatment group. Consequently, the 72-hour NOELR for cell density, biomass and growth rate was $< 1000 \, \mathrm{mg/L}$.

After 96 hours of exposure, the percent inhimition values for cell density, area under the growth curve and growth rate in the $1000 \, \mathrm{m}$ g/L WAF treatment group were 27, 28 and 7.1%, respectively, relative to the negative control. Dunnett's test indicated that cell density, biomass and growth rate were significantly reduced (p < 0.05) in the $1000 \, \mathrm{mg/L}$ WAF treatment group. Consequently, the 96-hour NOELR for cell density, biomass and growth rate was $< 1000 \, \mathrm{mg/L}$.

After 96 hours of exposure, there were no signs of adherence of cells to the test cham bers or aggregation/flocculation of algae in the controls or in the treatment group. There were no noticeable changes in cell morphology in the tested concentration when compared to the control.

CONCLUSIONS

Selenastrum capricornutum were exposed to a $1000 \, \mathrm{m}$ g/L water accommodated fraction (WAF) loading rate of petroleum coke and evaluated for effects on cell density, area under the growth curve and growth rate. The 72 and 96-hour EL 50 values, based on cell density (EL50), biom ass (EL_b50) and growth rate (EL $_r50$), were >1000 mg/L. The 72 and 96 hour NOELR, based on cell density, biomass and growth rate was <1000 mg/L.

REFERENCES

- Title 40 of the Code of Federal Regulations, Part 792. 1989. Toxic Substances Control Act (TSCA) Good laboratory Practice standards.
- 2 **OECD.** 1998. *OECD Principle of Good Laboratory Practice* ENV/MC/CHEM (98) 17.
- Organization for Economic Cooperation and Development. 2000. Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. ENV/JM/MONO (2000) 6. OECD Environmental Health and Safety Publication Series on Testing and Assessment No. 23. OECD, Paris, September 2000.
- 4 **Organization of Economic Cooperation and Development.** 1984. *Algal, Growth Inhibition Test.* OECD Guideline for Testing of Chemicals. Guideline 201. Paris.
- 5 **Official Journal of the European Com munities.** 1992. No. L383. Method C.3.: *Algal Inhibition Test.*
- 6 **U.S. Environmental Protection Agency.** 1996. Series 850 Ecological Effects Test Guidelines (draft), OPPTS Number 850.5400: *Algal Toxicity, Tiers I and II*.
- 7 **ASTM Standard Guide 1218-90E**, Standard Guide for Conducting Static 96-Hour Toxicity Tests with Microalgae. August 1990.
- 8 **Timothy Z. Kendall and Willard B. Nixon.** 2005. Analy tical Method Verification for the Determination of Water Soluble Components of Petroleum Coke in Freshwater Using Gas Chromatography (GC) or High Perform ance Liquid Chromatography (HPLC). Wildlife International, Ltd. Project Number 472C-104. Unpublished.
- 9 Raymond L. Van Hoven and Willard B. Nixon. 2005. Analy tical Method Verification for the Determ ination of Water Soluble Components of Petroleum Coke in Freshwater Using Inductively Coupled Plasm a Atom ic Emission Spectrometry (ICP-AES). Wildlife International, Ltd. Project Number 472C-105. Unpublished.
- 10 The SAS System for Windows. 1996. Version 8.02. SAS Institute Inc., Cary, North Carolina.

- 25-

Table 1

Measured Concentrations of Naphthalene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.96	99.6
40.0	MAS-2		39.9	99.9
100	MAS-3		97.8	97.8
			Mean =	99.1
			Standard Deviation =	1.14
			CV =	1.15%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 26-

Table 2

Measured Concentrations of Acenaphthylene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.88	98.8
40.0	MAS-2		40.2	101
100	MAS-3		100	100
			Mean =	99.9
			Standard Deviation =	1.10
			CV =	1.10%

The limit of quantitation (LOQ) was $5.00 \mu g/L$, calculated as the product of the lowest standard concentration ($5.00 \mu g/L$) and the dilution factor of the matrix blank samples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 27-

Table 3

Measured Concentrations of 1-Methylnaphthalene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.0	100
40.0	MAS-2		40.1	100
100	MAS-3		98.3	98.3
			Mean =	99.4
			Standard Deviation =	0.98
			CV =	0.99%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 28-

Table 4

Measured Concentrations of 2-Methylnaphthalene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.1	101
40.0	MAS-2		40.1	100
100	MAS-3		98.2	98.2
			Mean =	99.7
			Standard Deviation =	1.42
			CV =	1.42%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 29-

Table 5

Measured Concentrations of Fluorene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.9	109
40.0	MAS-2		39.6	98.9
100	MAS-3		99.3	99.3
			Mean =	102
			Standard Deviation =	5.72
			CV =	5.61%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 30-

Table 6

Measured Concentrations of Acenaphthene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.84	98.4
40.0	MAS-2		40.5	101
100	MAS-3		100	100
			Mean =	99.8
			Standard Deviation =	1.31
			CV =	1.31%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the matrix blank samples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 31-

Table 7

Measured Concentrations of Phenanthrene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal Concentration	Sample Identification	Sampling Interval	Measured Concentration	Percent of
(µg/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.90	99.0
40.0	MAS-2		40.6	101
100	MAS-3		101	101
			Mean =	100
			Standard Deviation =	1.15
			CV =	1.15%

The limit of quantitation (LOQ) was $5.00 \mu g/L$, calculated as the product of the lowest standard concentration ($5.00 \mu g/L$) and the dilution factor of the matrix blank samples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 32-

Table 8

Measured Concentrations of Anthracene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.7	107
40.0	MAS-2		41.6	104
100	MAS-3		103	103
			Mean =	105
			Standard Deviation =	2.08
			CV =	1.98%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 33-

Table 9

Measured Concentrations of Fluoranthrene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.89	98.9
40.0	MAS-2		41.4	103
100	MAS-3		99.9	99.9
			Mean =	101
			Standard Deviation =	2.14
			CV =	2.12%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 34-

Table 10

Measured Concentrations of Pyrene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.89	98.9
40.0	MAS-2		40.9	102
100	MAS-3		99.4	99.4
			Mean =	99.8
			Standard Deviation =	1.66
			CV =	1.66%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 35-

Table 11

Measured Concentrations of Chrysene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		8.75	87.5
40.0	MAS-2		39.2	98.0
100	MAS-3		99.1	99.1
			Mean =	94.9
			Standard Deviation =	6.40
			CV =	6.75%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the matrix blank samples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 36-

Table 12

Measured Concentrations of Benzo(a)anthracene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.81	98.1
40.0	MAS-2		40.9	102
100	MAS-3		101	101
			Mean =	100
			Standard Deviation =	2.03
			CV =	2.03%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 37-

Table 13

Measured Concentrations of Benzo(b)fluoranthene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.03	90.3
40.0	MAS-2		39.2	97.9
100	MAS-3		98.1	98.1
			Mean =	95.4
			Standard Deviation =	4.45
			CV =	4.66%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 38-

Table 14

Measured Concentrations of Benzo(k)fluoranthene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		8.98	89.8
40.0	MAS-2		38.9	97.2
100	MAS-3		99.0	99.0
			Mean =	95.3
			Standard Deviation =	4.88
			CV =	5.12%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 39-

Table 15

Measured Concentrations of Benzo(a)pyrene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.30	93.0
40.0	MAS-2		39.5	98.7
100	MAS-3		99.7	99.7
			Mean =	97.1
			Standard Deviation =	3.61
			CV =	3.72%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 40-

Table 16

Measured Concentrations of Dibenz(a,h)anthracene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.07	90.7
40.0	MAS-2		39.1	97.9
100	MAS-3		99.9	99.9
			Mean =	96.2
			Standard Deviation =	4.84
			CV =	5.03%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 41-

Table 17

Measured Concentrations of Indeno(1,2,3-cd)pyrene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal Concentration (µg/L)	Sample Identification (472A-114-)	Sampling Interval (Hour)	Measured Concentration $(\mu g/L)^1$	Percent of Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		8.63	86.3
40.0	MAS-2		39.4	98.6
100	MAS-3		99.7	99.7
			Mean =	94.9
			Standard Deviation =	7.44
			CV =	7.84%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the matrix blank samples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 42-

Table 18

Measured Concentrations of Benzo(g,h,i)perylene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ < LOQ	
	-			
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.43	94.3
40.0	MAS-2		40.1	100
100	MAS-3		99.7	99.7
			Mean =	98.0
			Standard Deviation =	3.21
			CV =	3.27%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 43-

Table 19

Measured Concentrations of Dibenzo(a,e)pyrene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-114-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	3	0	< LOQ	
1000	4	0	< LOQ	
Negative Control	7	72	< LOQ	
1000	8	72	< LOQ	
Negative Control	11	96	< LOQ	
1000	12	96	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-114-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.89	98.9
40.0	MAS-2		39.8	99.5
100	MAS-3		102	102
			Mean =	100
			Standard Deviation =	1.64
			CV =	1.64%

The limit of quantitation (LOQ) was 5.00 μ g/L, calculated as the product of the lowest standard concentration (5.00 μ g/L) and the dilution factor of the m atrix blank sam ples (1.00).

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 44-

Table 20

Measured Concentrations of Arsenic Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-114-)	Sampling Interval (Hours)	Measured Arsenic Concentration (μg/L) 1,2
Negative Control	1	0	<loq< td=""></loq<>
1000	2	0	<loq< td=""></loq<>
Negative Control	5	72	< LOQ
1000	6	72	< LOQ
Negative Control 1000	9	96	< LOQ
	10	96	< LOQ

Nominal		Measured	_
Arsenic	Sample	Arsenic	Percent
Concentration	Identification	Concentration	of
$(\mu g/L)$	(472A-114-)	$(\mu g/L)^{1}$	Nominal ¹
0.0	MAB-1	< LOQ	
50.0	MAS-2	45.4	90.7

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 20 μ g/L (7).

- 45-

Table 21

Measured Concentrations of Copper Analyzed by ICP-AES

Nominal			Measured
Petroleum Coke	Sample	Sampling	Copper
Concentration	Identification	Interval	Concentration
(mg/L)	(472A-114-)	(Hours)	$(\mu g/L)^{1,2}$
Negative Control	1	0	< LOQ
1000	2	0	< LOQ
Negative Control	5	72	< LOQ
1000	6	72	< LOQ
Negative Control	9	96	< LOQ
1000	10	96	< LOQ

Nominal		Measured	
Copper	Sample	Copper	Percent
Concentration	Identification	Concentration	of
$(\mu g/L)$	(472A-114-)	$(\mu g/L)^{1}$	Nominal ¹
0.0	MAB-1	< LOQ	
50.0	MAS-2	43.6	87.3

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

² The limit of quantitation (LOQ) for these analyses was set at 20 μ g/L (7).

- 46-

Table 22

Measured Concentrations of Iron Analyzed by ICP-AES

Nominal			Measured
Petroleum Coke	Sample	Sampling	Iron
Concentration	Identification	Interval	Concentration
(mg/L)	(472A-114-)	(Hours)	$(\mu g/L)^{1,2}$
Negative Control	1	0	< LOQ
1000	2	0	< LOQ
Negative Control	5	72	< LOQ
1000	6	72	< LOQ
Negative Control	9	96	< LOQ
1000	10	96	< LOQ

Nominal		Measured	
Iron	Sample	Iron	Percent
Concentration	Identification	Concentration	of
$(\mu g/L)$	(472A-114-)	$(\mu g/L)^{1}$	Nominal ¹
0.0	MAB-1	< LOQ	
25.0	MAS-1	27.5	110

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 10 μ g/L (7).

- 47-

Table 23

Measured Concentrations of Nickel Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-114-)	Sampling Interval (Hours)	Measured Nickel Concentration (μg/L) 1,2
Negative Control 1000	1 2	0	<loq <loq< td=""></loq<></loq
Negative Control	5	72	< LOQ
1000	6	72	< LOQ
Negative Control 1000	9	96	< LOQ
	10	96	< LOQ

Nominal		Measured	
Nickel	Sample	Nickel	Percent
Concentration	Identification	Concentration	of
(µg/L)	(472A-114-)	$(\mu g/L)^{1}$	Nominal 1
0.0	MAB-1	< LOQ	
25.0	MAS-1	27.0	108

¹ Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 10 μ g/L (7).

- 48-

Table 24

Measured Concentrations of Selenium Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-114-)	Sampling Interval (Hours)	Measured Selenium Concentration (µg/L) 1,2
Negative Control	1	0	< LOQ
1000	2		< LOQ
Negative Control 1000	5	72	< LOQ
	6	72	< LOQ
Negative Control	9	96	< LOQ
1000	10	96	< LOQ

Nominal		Measured	
Selenium	Sample	Selenium	Percent
Concentration	Identification	Concentration	of
μ g/L)	(472A-114-)	$(\mu g/L)^{-1}$	Nominal 1
0.0	MAB-1	< LOQ	
500	MAS-2	459	91.9

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 200 μ g/L (7).

- 49-

Table 25

Measured Concentrations of Vanadium Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-114-)	Sampling Interval (Hours)	Measured Vanadium Concentration (µg/L) 1,2
Negative Control	1	0	< LOQ
1000	2	0	< LOQ
Negative Control	5	72	< LOQ
1000	6	72	< LOQ
Negative Control	9	96	< LOQ
1000	10	96	< LOQ

Nominal		Measured	
Vanadium	Sample	Vanadium	Percent
Concentration	Identification	Concentration	of
$(\mu g/L)$	(472A-114-)	$(\mu g/L)^{1}$	Nominal ¹
0.0	MAB-1	< LOQ	
1.00	MAS-1	1.13	113

¹ Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 0.40 μ g/L (7).

- 50-

Table 26

Measured Concentrations of Sulfur Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-114-)	Sampling Interval (Hours)	Measured Sulfur Concentration (mg/L) 1,2
Negative Control	1	0	<loq< td=""></loq<>
1000	2	0	<loq< td=""></loq<>
Negative Control	5	72	< LOQ
1000	6	72	< LOQ
Negative Control	9	96	<loq< td=""></loq<>
1000	10	96	<loq< td=""></loq<>

Nominal		Measured	
Sulfur	Sample	Sulfur	Percent
Concentration	Identification	Concentration	of
$\underline{\hspace{1cm}}$ (mg/L)	(472A-114-)	$(mg/L)^{1}$	Nominal 1
0.0	MAB-1	< LOQ	
20.0	MAS-1	24.9	124

¹Results were generated using Excel 2000 in full precision mode.

Manual calculations may differ slightly.

The limit of quantitation (LOQ) for these analyses was set at 10 mg/L (7).

- 51-

Table 27Temperature Measurements

Time	Temperature (°C)				
(Days)	Measurement 1	Measurement 2 ¹			
0 23.1		23.5			
1 23.6		23.4			
2 23.6		23.0			
3 23.6		23.0			
4 23.1		23.0			

¹ Temperature Measurement 2 was typically taken at least 4 hours after Measurement 1.

- 52-

Table 28
pH Measurements

Nominal WAF Concentration	pH Measurements						
(mg/L)	Day 0 ¹ Day	1 ² Day	2 ³ Day	3 ⁴ Day	4 ⁵		
Negative Control	7.9 7.9 8.6			8.9	10.6		
1000	7.9 7.9 8.3			8.5	9.8		

Day 0 samples were collected from the individual batches of test solution prepared for each treatment and control group at test initiation.

² 24-hour samples were collected from the pooled A, B, C, D, E and F replicates.

³ 48-hour samples were collected from the pooled G, H, I, J, K and L replicates.

⁴ 72-hour samples were collected from the pooled M, N, O, P Q and R replicates.

⁵ 96-hour samples were collected from the pooled S, T, U, V, W and X replicates.

- 53-

Table 29
Light Intensity Measurements

	Light Intensity (lux) ¹							
Test Day	Measurement No. 1	Measurement No. 2	Measurement No. 3	Measurement No. 4	Measurement No. 5			
0 3980		3880	4520	4620	4140			
1 4370		3990	3970	4040	4580			
2 4000		4200	4520	4370	3880			
3 4080		4090	4480	4210	3910			
4 4020		3870	4280	4240	3910			

¹ Measurements taken on shaker table # 1 at five locations surrounding the test flasks at test solution level.

	Light Intensity (lux) ¹							
Test Day	Measurement No. 1	Measurement No. 2	Measurement No. 3	Measurement No. 4	Measurement No. 5			
0 4010		4380	4520	3910	4090			
1 4120		4450	3920	4470	4340			
2 4130		4360	4670	4040	3920			
3 4180		4280	4570	4020	3980			
4 3980		4190	4060	3960	4620			

¹ Measurements taken on shaker table # 7 at five locations surrounding the test flasks at test solution level.

Table 30 Mean Cell Densities and Percent Inhibition

Nominal WAF	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		48 Hours		72 H	72 Hours		96 Hours	
Concentration (mg/L)	Cell Density ¹	Percent Inhibition ^{1,2}	Cell Density ¹	Percent Inhibition ^{1,2}	Cell Density ¹	Percent Inhibition ^{1,2}	Cell Density ¹	Percent Inhibition ^{1,2}	
Negative Control	24,000		68,500		181,000		413,333		
1000	20,667	14	58,833	14	119,333*	34	301,667*	27	

Calculations were performed using SAS version 8.02. Manual calculations may differ slightly due to rounding.
Percent inhibition was calculated relative to the control replicates.

^{*} There were statistically significant differences ($p \le 0.05$) at 72 and 96 hours from the control replicates using the Dunnett's test.

Table 31 Mean Areas Under the Growth Curve (Biomass) and Percent Inhibition

Nominal WAF	- 10		0 - 4	0 - 48 Hours		0 - 72 Hours		0 - 96 Hours	
(mg/L)	Mean Area ¹	Percent Inhibition ^{1,2}							
Negative Control	228,000		1,218,000		4,092,000		1,1104,000		
1000	188,000	18	1,022,000	16	3,040,000*	26	7,972,000*	28	

Calculations were performed using SAS version 8.02. Manual calculations may differ slightly due to rounding.

Percent inhibition was calculated relative to the control replicates.

^{*} There were statistically significant differences ($p \le 0.05$) at 72 and 96 hours from the control replicates using the Dunnett's test.

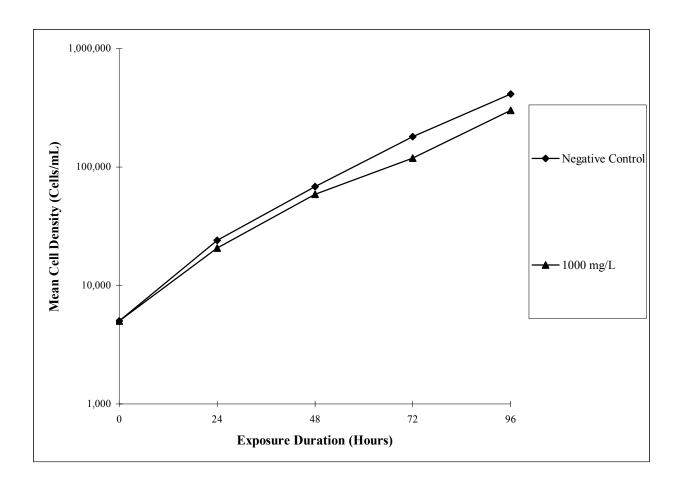
Table 32 Mean Growth Rates and Percent Inhibition

Nominal WAF	0 - 24 1	0 - 24 Hours 0 - 48 Hours		0 - 72 Hours		0 - 96 Hours		
Concentration (mg/L)	Mean Growth Rate ¹	Percent Inhibition ^{1,2}	Mean Growth Rate ¹	Percent Inhibition ^{1,2}	Mean Growth Rate ¹	Percent Inhibition ^{1,2}	Mean Growth Rate ¹	Percent Inhibition ^{1,2}
Negative Control	0.0645		0.0542		0.0497		0.0457	
1000	0.0586	9.0	0.0507	6.4	0.0438*	12	0.0425*	7.1

Calculations were performed using SAS version 8.02. Manual calculations may differ slightly due to rounding.

Percent inhibition was calculated relative to the control replicates.

^{*} There were statistically significant differences ($p \le 0.05$) at 72 and 96 hours from the control replicates using the Dunnett's test.


- 57 -

 $\label{eq:Table 33}$ Estimates of the EL50, E_bL50 and E_rL50 Values Over the 96-Hour Exposure Period

Cell Density			r the Growth Curve Biomass)	Growth Rate		
Time	EL50 (mg/L)	95% Confidence Interval (mg/L)	E _b L50 (mg/L)	95% Confidence Interval (mg/L)	E _r L50 (mg/L)	95% Confidence Interval (mg/L)
24 Hours	>1000	1	>1000	1	>1000	1
48 Hours	>1000	1	>1000	1	>1000	1
72 Hours	>1000	1	>1000	1	>1000	1
96 Hours	>1000	1	>1000	1	>1000	1

¹ 95% confidence limits could not be calculated with the data obtained.

Figure 1. Concentration-response curve for *Selenastrum capricornutum* exposed to a 1000 m g/L WAF solution of Petroleum Coke for 96 hours, expressed as cell density.

- 59 -

Appendix 1

Exploratory Non-GLP Rangefinding Toxicity Test with Petroleum Coke

EXPLORATORY NON-GLP RANGEFINDING TOXICITY TEST WITH PETROLEUM COKE

96-Hour Toxicity Rangefinding Test with Selenastrum capricornutum

Project Number 472A-114

Introduction

An exploratory non-GLP rangefinding test was conducted from December 8 to 12, 2004 in the Wildlife International, Ltd. aquatic toxicology laboratory. The test was conducted under static conditions for 96 hours, with no renewal of test solutions.

Methods and Materials

Test solutions were prepared as water accomodated fractions (WAF) at nominal loading rates of 10, 100 and 1000 mg test substance/L. An untreated control group was maintained concurrently. For each WAF, a calculated amount of test substance was mixed with 4 L of algal media in a 4 L Pyrex aspirator bottle with tubulation. The solution was stirred for approximately 24 hours on a magnetic stir plate, with a vortex maintained at approximately 30% of the solution height. After mixing, each solution was allowed to settle for approximately one hour, and the solution was decanted into one test chamber per concentration. Test chambers were 300 mL BOD bottles with glass stoppers, filled completely with test solution to minimize headspace.

One test chamber per treatment and control group was initiated with 5,000 Selenastrum cells/mL of test solution. The test chambers were placed in a temperature-controlled environmental chamber set to maintain the target temperature of $24 \pm 2^{\circ}$ C and target light intensity of 4300 ± 430 lux. Cell counts were preformed using a hemacytometer and microscope after 96 hours of incubation.

Results

The results of the rangefinding test are included in the attached table. Based on the nominal WAF concentrations, the 96-hour EL50 value for the rangefinding test was estimated to be greater than 1000 mg/L, the highest loading rate tested. No effects were seen at the highest loading rate used in the test (no observed effect level = 1000 mg/L loading rate).

PETROLEUM COKE

RESULTS OF A 96-HOUR RANGEFINDING TEST WITH Selenastrum capricornutum

(Preliminary results not audited by Quality Assurance)

STUDY:

Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater

Alga (Selenastrum capricornutum)

SPONSOR:

American Petroleum Institute

PROJECT NO.:

472A-114

Nominal Loading rate (mg/L)	96-Hour Cell Density (cells/mL)	Percent Inhibition
Negative Control	4.25 X 10 ⁵	
10	4.30 X 10 ⁵	-1.2
100	4.65 X 10 ⁵	-9.4
1000^{1}	4.35 X 10 ⁵	-2.4

- 62 -

Appendix 2

Protocol, Protocol Amendments and Deviations

PROTOCOL

PETROLEUM COKE: A 96-HOUR TOXICITY TEST WITH THE FRESHWATER ALGA (Selenastrum capricornutum)

Guidelines:

OECD Guideline 201

EU Directive 92/69/EEC, Method C.3.

U.S. EPA OPPTS Number 850.5400

Submitted to

American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005

Wildlife International, Ltd.

8598 Commerce Drive Easton, Maryland 21601 (410) 822-8600

March 30, 2004

- 2 -

PETROLEUM COKE: A 96-HOUR TOXICITY TEST

WITH THE FRESHWATER ALGA (Selenastrum capricornutum)				
SPONSOR:	American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005			
SPONSOR'S REPRESENTATIVE:				
SPONSOR'S TECHNICAL STUDY MONITOR:				
TESTING FACILITY:	Wildlife International, Ltd. 8598 Commerce Drive Easton, Maryland 21601			
STUDY DIRECTOR:	Wildlife International Ltd.			
LABORATORY MANAGEMENT:				
FOR LABORAT	ORY USE ONLY			
Proposed Dates:	ORY USE ONLY			
	Experimental			
Proposed Dates:				
Proposed Dates: Experimental	Experimental			
Proposed Dates: Experimental Start Date:	Experimental			
Proposed Dates: Experimental Start Date: Project No.: 472A-114	Experimental Termination Date:			
Proposed Dates: Experimental Start Date: Project No.: 472A-114 Test Concentrations:	Experimental Termination Date:			
Proposed Dates: Experimental Start Date: Project No.: 472A-114 Test Concentrations: Test Substance No.: 6485 Reference Su	Experimental Termination Date:			

- 3 -

INTRODUCTION

Wildlife International, Ltd. will conduct an algal toxicity test to determine the effects of water soluble components of petroleum coke on the freshwater alga, *Selenastrum capricornutum*, for the Sponsor at the Wildlife International, Ltd. aquatic toxicology facility in Easton, Maryland. Petroleum coke is defined as the product formed by subjecting the heavy tar-like residue remaining following oil refining to high temperatures and pressures. It consists of primarily elemental carbon with considerably smaller amounts of hydrocarbons, sulfur and trace amounts of heavy metals. The study will be performed based on procedures outlined in OECD Guideline for Testing of Chemicals 201: *Alga, Growth Inhibition Test* (1); Official Journal of the European Communities No. L383 C.3. *Algal Inhibition Test* (2); and U.S. Environmental Protection Agency Series 850 - Ecological Effects Test Guidelines OPPTS Number 850.5400 (3), when possible. Raw data for all work performed at Wildlife International, Ltd. and a copy of the final report will be filed by project number in archives located on the Wildlife International, Ltd. site or at an alternative location to be specified in the final report.

OBJECTIVE

The objective of this study is to determine the toxicity of water soluble components of petroleum coke to the freshwater green alga, *Selenastrum capricornutum*.

EXPERIMENTAL DESIGN

The green alga, Selenastrum capricornutum, will be exposed to a geometric series of at least five water accommodated fraction (WAF) loading rates and a negative (culture medium) control for 96 hours. WAF loading rates will be selected in consultation with the Sponsor and will be based on information such as a results of rangefinding toxicity data, known toxicity data, physical/chemical properties of the test substance or other relevant information. Target loading rates will not exceed 1000 mg/L. For this test, the term loading rate means the total amount of test substance added to the dilution water volume (mg/L) to achieve the respective WAF solution. Generally, each concentration of test material used in the definitive test will be at least 50% of the next higher treatment, unless information concerning the concentration-effect curve indicates that a different dilution factor is more appropriate. Water samples will be collected at specified intervals for analysis of selected constituents of petroleum coke.

Test solutions will be inoculated at the beginning of the test with approximately 5,000 *Selenastrum* cells/mL. Twelve replicates in the control and treatment groups will be tested. In order to control bias, the

- 4 -

position of the flasks will be determined by indiscriminate draw at the beginning of the experiment and daily during the exposure period. No other potential sources of bias are expected to affect the results of the study.

The response of the algae will be measured in terms of biomass expressed as cell density, area under the growth curve and growth rate. EL50 values (i.e., the theoretical loading rate that produces a 50% reduction in the measured parameter) will be calculated, if possible, for each 24-hour interval of the test. The no observed adverse effect level (NOAEL), which is the highest WAF loading rate that has no adverse inhibitory effect on algal growth, will be determined relative to each parameter at 72 and 96 hours based on evaluation of the statistical results and the dose-response pattern. At the end of the 96-hour exposure, algistatic effects will be differentiated from algicidal effects in those treatments which are maximally inhibited.

MATERIALS AND METHODS

Test Substance

The test substance is green coke (CAS Number 64741-79-3) sieved to approximately 2 mm particle size. Information on the characterization of test, control or reference substances is required by OECD Principles of Good Laboratory Practice (3) and TSCA Good Laboratory Practice Standards (40 CFR Part 792) (4). The Sponsor is responsible for providing Wildlife International, Ltd. written verification that the test substance has been characterized according to GLP prior to its use in the study. If written verification of GLP test substance characterization is not provided to Wildlife International, Ltd., it will be noted in the compliance statement of the final report.

The Sponsor is responsible for all information related to the test substance and agrees to accept any unused test substance and/or test substance containers remaining at the end of the study.

Preparation of Water Accommodated Fraction Solutions

The test substance will be mixed directly with culture medium on a weight:volume basis. Each WAF will be prepared individually in a 4 L Pyrex® aspirator bottle with tubulation by mixing an amount of the test substance in approximately 4 L of dilution water using a Teflon®-coated stir bar on a magnetic stir plate. Care will be taken to maintain a vortex depth of approximately 30% of the test solution height.

- 5 -

The length of the mixing time in the definitive test will be determined based on results of the WAF equilibration trial. Following the mixing period, the WAF solutions will then be allowed to settle for approximately 1 hour and the test solution will be decanted off the top (or bottom, as appropriate).

Justification for Route of Exposure

The test substance will be administered to the test organism in algal medium in the form of water accommodated fractions. The route of exposure is justified because it is the primary exposure pathway of algae to chemicals.

Test Organism

The freshwater green alga, Selenastrum capricornutum, will be used in this test. This species is representative of an important group of algae and was selected for use in the test based upon past use and ease of handling in the laboratory. Stock cultures, obtained from the Culture Collection of Algae at the University of Texas at Austin or another supplier, will be maintained in culture medium at Wildlife International, Ltd. for a minimum of two weeks prior to use in a toxicity test. Algae used in toxicity tests will be in exponential growth phase, which is defined as the period of growth when algal cells are dividing at a constant rate.

Just prior to beginning the test, an inoculum of the stock culture will be prepared so that each milliliter of inoculum contains enough cells to provide an initial cell density of approximately 5,000 cells/mL in each replicate.

Culture Medium

Culture medium prepared according to Wildlife International, Ltd. Standard Operating Procedures will be used as dilution water. The concentrations of the components in the medium are presented in Table 1 (1, 6). In addition to the medium components presented in Table 1, the medium will also contain supplemental sodium bicarbonate (35 mg/L). The total concentration of sodium bicarbonate in the medium will be 50 mg/L. Stock nutrient solutions will be prepared by adding reagent-grade chemicals to purified Wildlife International, Ltd. well water (e.g., NANOpure®). Appropriate volumes of the stock nutrient solutions will then be diluted with purified well water to prepare the medium. The medium will be filter sterilized (0.22 μ m) or autoclaved prior to use. The final pH of the medium should be 7.5 \pm 0.1. Analyses will be performed at least once annually to determine the concentrations of selected organics and

- 6 -

inorganic constituents of the well water and the results of the most recent GLP-compliant analyses will be summarized in the final report.

Specifications for acceptable levels of contaminants have not been established for culture medium. However, there are no levels of contaminants reasonably expected to be present in the medium that are considered to interfere with the purpose or conduct of the study.

Test Apparatus

Test chambers will be sterile, 300-mL glass BOD bottles with glass stoppers. The bottles will be completely filled with test solution to avoid headspace. Each test chamber will contain two glass marbles to promote mixing. Test chambers will be indiscriminately positioned on a mechanical shaker table in an environmental chamber and will be shaken continuously at approximately 100 rpm. The shaker will be checked daily during the test to ensure the proper setting. Test chambers will be labeled with the project number, test loading rate, and replicate.

Environmental Conditions

Test flasks will be held at $24 \pm 2^{\circ}$ C under continuous fluorescent lighting (e.g., cool white light tubes) at an intensity of approximately 4300 ± 430 lux. Light intensity will be measured at five locations on the shaker table daily during the test. Temperature will be measured twice daily in the environmental chamber using a liquid-in-glass thermometer.

The pH of each treatment and the control will be measured at test initiation, at each 24-hour sampling interval and at termination using a Fisher Accumet Model 915 pH meter or equivalent. Samples will be collected from the batch of test solution prepared at test initiation for each treatment and control group for the measurement of pH. At 24, 48, 72 and 96 hours, pH will be measured in pooled test solution samples collected from the three replicates sacrificed from each treatment and the control group. At test termination, pH will be measured in pooled test solution samples collected from the remaining three replicates of each treatment and control group. An explanation will be provided if pH deviations of more than one unit are observed.

-7-

Observations of test substance solubility (e.g., surface slicks, precipitates, etc.) also will be recorded.

Biological Measurements

Cell densities will be monitored during the test by conducting cell counts using either a hemacytometer and a microscope or an electronic particle counter (Coulter Electronics, Hialeah, Florida). One sample will be collected from three replicates of the treatment and control groups at 24, 48, 72 and 96 hours. At each measurement period, the three replicates will be destructively sampled (i.e., samples taken and then replicates removed from the test). The samples will be evaluated immediately or will be held in the dark under refrigeration until cell counts can be performed. Each sample will be diluted using an electrolyte solution (Isoton®), as needed, to maintain counting accuracy. If counts are performed with a hemacytometer, a small amount of each sample will be loaded onto the hemacytometer and the total number of cells in 10 grids will be counted. The cell density of the sample will be calculated based on the mean number of cells per grid. If an electronic particle counter is used, the samples will be diluted as necessary, using Isoton®, and three, 0.5-mL volumes of the sample will be counted. In this case, the cell density of each sample will be the mean of the three counts. Exponential growth in the negative control will be confirmed at 96 hours. The test will not be considered valid if exponential growth at 96 hours cannot be determined.

Samples of test solutions will be collected from each of the three replicate per treatment and control group at the end of the test. These samples will be pooled within their respective treatments, and subsamples will be removed and examined microscopically for atypical cell morphology (e.g., changes in shape, size or color). Aggregations or flocculations of cells and adherence of the cells to the test chamber will be documented if observed during the test.

At the end of the test, algistatic effects, which result in the inhibition of cell growth, will be differentiated from algicidal effects, which result in the death of cells. Aliquots (0.5 mL) of test solutions will be taken from each replicate test chamber where growth is maximally inhibited. Maximally inhibited treatments are those in which it cannot be visually determined if live algal cells are present (e.g. absence of color to the test solution). These aliquots will be combined and diluted with algal medium to a concentration of the test substance that theoretically should not affect growth. A negative control will be

-8-

prepared by diluting a 0.5-mL aliquot from one negative control replicate to 100 mL with algal medium. Growth of these subcultures will be monitored for up to 9 days to determine whether inhibition of growth observed during the test is reversible. Samples will be collected for cell counts at recovery phase initiation, termination and at approximately 3-day intervals between initiation and termination. The recovery phase may be terminated once algal growth is sufficient to indicate that the algal cells have fully recovered from effects due to the test substance. This will be determined through visual examination of the recovery test solutions.

Sampling for Analytical Measurements

Test solution samples will be decanted from each WAF preparation vessel at the beginning of the test, and collected from the pooled replicates of each treatment level after 72 hours and at the end of the test to determine concentrations of the constituents of interest in petroleum coke. Samples will be collected and analyzed immediately or placed in a glass container with minimal head space and stored under refrigeration until analyzed. Samples will be analyzed for the components of petroleum coke listed in Table 2. The sample scheme is summarized below:

PROPOSED NUMBERS OF VERIFICATION SAMPLES

Experimental Group	Day 0	Day 3	Day 4
Control	1	1	1
Level 1-Low Concentration	1	1	1
Level 2	1	1	1
Level 3	1	1	1
Level 4	1	1	1
Level 5-High Concentration	1	1	1
Totals	6	6	6

Total Number of Verification Samples = 18

The above numbers of samples represent those collected from the test and do not include quality control (QC) samples such as matrix blanks and fortifications prepared and analyzed during the analytical chemistry phase of the study. At the discretion of the Study Director, samples from one or more appropriate test chambers will be collected and analyzed if an error in sampling or analysis is suspected.

-9-

The reason for the additional samples will be documented in the raw data and summarized in the final report.

Analytical Chemistry

Chemical analysis of the samples will be performed by Wildlife International, Ltd. The analytical method used will be based upon chromatographic methodology and/or ICP analysis for metals. The methodology used to analyze the test samples will be documented in the raw data and summarized in the final report.

Conditions for the Validity of the Test

In order for the test to be considered valid, the test must have demonstrated that:

- the mean cell density in the control flasks must have increased by a factor of at least 16
 within 3 days or at least 100 within 4 days; and
- the coefficient of variability for the cell density in the control flasks at 96 hours is less than 20%.

Data Analysis

Area under the growth curve will be calculated for the treatment and control groups using the following formula:

$$A = ((N_1 - N_o)/2)(t_1) + ((N_1 + N_2 - 2N_o)/2)(t_2 - t_1) + \dots + ((N_{n-1} + N_n - 2N_o)/2)(t_n - t_{n-1})$$

Where:

A = Area under the growth curve

 $N_o = Nominal number of cells/mL$ at t_o (beginning of test)

 N_1 = Measured number of cells/mL at t_1

 N_2 = Measured number of cells/mL at t_2

 $N_n = Measured$ number of cells/mL at t_n

 t_1 = Time of first measurement after beginning of test (hours)

 t_2 = Time of second measurement after beginning of test (hours)

 t_n = Time of nth measurement after beginning of test (hours)

Growth rates will be calculated for the treatment and control groups using the following formula:

Growth Rate =
$$\frac{\ln N_n - \ln N_1}{t_n - t_1}$$

- 10 -

where:

 N_n = Measured number of cells/mL at t_n

 N_1 = Measured number of cells/ml at t_1

 t_n = time of n^{th} measurement after beginning of test (hours)

 t_1 = time of first measurement after beginning of test (hours)

Percent inhibition will be calculated for each treatment group using the following formula:

$$Percent Inhibition = \frac{Mean Control Response - Mean Treatment Response}{Mean Control Response} X 100$$

EL50, E_bL50 values and E_rL50 values will be determined, when possible, using linear interpolation (7) or other suitable techniques with treatment response (cell density, biomass and growth rate) and WAF loading rate data. All values will be based on nominal loading rates used in the test.

A no-observed-adverse-effect level (NOAEL) will be selected at 72 and 96 hours based on an evaluation of the concentration-response pattern and the results of the statistical analyses of the cell density, biomass and growth rate data at 72 and 96 hours. Statistically significant differences between the control and the treatment groups will be identified using analysis of variance (ANOVA) and a test to compare treatment mean responses to the control response (e.g., Dunnett's test or Bonferroni's t-test). Data will be assessed for normality and homogeneity of variances prior to performing the ANOVA. Transformations will be used to correct any condition of non-normality or unequal error variances, when possible. Additional analysis of data may be conducted if deemed appropriate by the Study Director. The results of the analysis will be documented in the raw data and summarized in the final report. Statistical comparisons for the ANOVA and the comparison of mean responses will be carried out using SAS System for Windows software (8) or equivalent.

RECORDS TO BE MAINTAINED

Records to be maintained for data generated at Wildlife International, Ltd. will include, but not be limited to:

- 1. Copy of signed protocol.
- 2. Identification and characterization of the test substance, if provided by Sponsor.

Wildlife International, Ltd.

-11-

- 3. Dates of initiation and termination of the test.
- 4. Source of algae.
- 5. Culture conditions.
- 6. Growth measurements.
- 7. Calculation and preparation of test concentrations.
- 8. Observations.
- The methods used to analyze test substance concentrations and the results of analytical measurements.
- 10. Statistical calculations.
- 11. Test conditions and physical/chemical measurements.
- 12. Copy of final report.

FINAL REPORT

A final report of the results of the study will be prepared by Wildlife International, Ltd. The report will include, but not be limited to the following, when applicable:

- 1. Name and address of the facility performing the study.
- 2. Dates upon which the study was initiated and completed, and the definitive experimental start and termination dates.
- A statement of compliance signed by the Study Director addressing any exceptions to Good Laboratory Practice Standards.
- 4. Objectives and procedures, as stated in the approved protocol, including a copy of the final protocol, and all amendments and deviations to the protocol.
- 5. The test substance identification including name, chemical abstract number or code number, strength, purity, composition, and other information provided by the Sponsor.
- 6. Stability and solubility of the test substance under the conditions of administration, if provided by the Sponsor.
- 7. A description of the methods used to conduct the test.
- 8. A description of the test organisms, including the source, scientific name, age or life stage, light intensity and photoperiod.
- 9. A description of the preparation of the test solutions.

Wildlife International, Ltd.

- 12 -

- 10. The methods used to allocate organisms to test chambers and begin the test, the number of organisms and chambers per treatment, the duration of the test, and environmental conditions during the test.
- 11. A description of circumstances that may have affected the quality or integrity of the data.
- 12. The name of the Study Director and the names of other scientists, professionals, and supervisory personnel involved in the study.
- 13. A description of the transformations, calculations, and operations performed on the data, a summary and analysis of the biological data and analytical chemistry data, and a statement of the conclusions drawn from the analyses. A graph plotting the concentration response curve, if possible.
- 14. Statistical methods used to evaluate the data, and copies of the output from the statistics programs.
- 15. The signed and dated reports of each of the individual scientists or other professionals involved in the study.
- 16. The location where raw data and final report are to be stored.
- 17. A statement prepared by the Quality Assurance Unit listing the dates that study inspections were made and the dates of any findings reported to the Study Director and Management.
- 18. If it is necessary to make corrections or additions to a final report after it has been accepted, such changes will be made in the form of an amendment issued by the Study Director. The amendment will clearly identify the part of the final report that is being amended and the reasons for the amendment, and will be signed by the Study Director.
- 19. Any statistical program output.

CHANGES TO PROTOCOL

Planned changes to the protocol will be in the form of written amendments signed by the Study Director and approved by the Sponsor's Representative. Amendments will be considered as part of the protocol and will be attached to the final protocol. Any other changes will be in the form of written deviations signed by the Study Director and filed with the raw data. All changes to and deviation from the protocol will be indicated in the final report.

GOOD LABORATORY PRACTICES

This study will be conducted in accordance with OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17) (3) and TSCA Good Laboratory Practice Standards (40 CFR Part 792) (4). Each study conducted by Wildlife International, Ltd. is routinely examined by the Wildlife International,

- 75 -

Wildlife International, Ltd.

- 13 -

Ltd. Quality Assurance Unit for compliance with Good Laboratory Practices, Standard Operating Procedures and the specified protocol. A statement of compliance with Good Laboratory Practices will be prepared for all portions of the study conducted by Wildlife International, Ltd. The Sponsor will be responsible for compliance with Good Laboratory Practices for procedures performed by other laboratories (e.g., residue analyses or pathology). Raw data for all work performed at Wildlife International, Ltd. and a copy of the final report will be filed by project number in archives located on the Wildlife International, Ltd. site or at an alternative location to be specified in the final report.

Wildlife International, Ltd.

- 14 -

REFERENCES

- 1 **Organisation for Economic Cooperation and Development.** 1984. OECD Guideline for Testing of Chemicals, Guideline 201: *Alga, Growth Inhibition Test*.
- Official Journal of the European Communities. 1992. No. L383. Method C.3. Algal Inhibition Test.
- U.S. Environmental Protection Agency. 1996. Series 850- Ecological Effects Test Guidelines (draft), OPPTS Number 850.5400: Algal Toxicity, Tiers I and II.
- 4 **OECD.** 1998. OECD Principles of Good Laboratory Practice ENV/MC/CHEM (98) 17.
- 5 Title 40 of the Code of Federal Regulations, Part 792. 1989. Toxic Substances Control Act (TSCA) Good Laboratory Practice Standards.
- 6 **ASTM Standard Guide 1218-90E.** 1990. Standard Guide for Conducting Static 96-Hour Toxicity Tests with Microalgae. American Society for Testing and Materials. Philadelphia, Pennsylvania.
- 7 Norberg-King, T.J. 1993. A Linear Interpolation Method for Sublethal Toxicity: The Inhibition Concentration (ICp) Approach. Version 2.0. U.S. Environmental Protection Agency. National Effluent Toxicity Assessment Center. Duluth, Minnesota. Technical Report 03-93.
- The SAS System for Windows. 2001. Version 8.02. SAS Institute Inc., Cary, North Carolina.

$Wildlife\ International,\ Ltd.$

- 15 -

TABLE 1 FRESHWATER ALGAL MEDIUM CONSTITUENTS

Component	Nominal Concentration
MgCl ₂ •6H ₂ O	12.164 mg/L
CaCl ₂ •2H ₂ O	4.410 mg/L
H_3BO_3	0.1855 mg/L
MnCl ₂ •4H ₂ O	0.4154 mg/L
$ZnCl_2$	$3.27 \mu g/L$
FeCl ₃ •6H ₂ O	0.1598 mg/L
CoCl ₂ •6H ₂ O	1.428 μg/L
Na ₂ MoO ₄ •2H ₂ O	7.26 μg/L
CuCl ₂ •2H ₂ O	0.012 µg/L
Na ₂ EDTA•2H ₂ O	0.300 mg/L
NaNO ₃	25.50 mg/L
$MgSO_4 \cdot 7H_2O$	14.70 mg/L
K ₂ HPO ₄	1.044 mg/L
NaHCO ₃	15.00 mg/L

The pH of the medium will be adjusted, as necessary, to 7.5 ± 0.1 using 0.1 N NaOH or 10% HCl.

Wildlife International, Ltd.

- 16 -

Table 2.

Analytes of Interest in Petroleum Coke

PAH	Metals and Sulfur
Acenaphthene	Nickel
Acenaphthylene	Vanadium
Anthracene	Iron
Benzo(a)anthracene	Copper
Benzo(a)pyrene	Selenium
Benzo(b)fluoranthene	Arsenic
Benzo(g,h,i)perylene	Sulfur
Benzo(k)fluoranthene	
Chrysene	
Dibenzo(a,e)pyrene	
Dibenz(a,h)anthracene	
Fluoranthene	
Fluorene	
Indeno(1,2,3-cd)pyrene	
Naphthalene	
Perylene	
Phenanthrene	
Pyrene	

Project Number 472A-114 Page 1 of 5

Wildlife International, Ltd.

AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga

(Selenastrum capricornutum)

PROTOCOL NO.: 472/033004/SEL-OECD/SUB472 AMENDMENT NO.: 1

SPONSOR: American Petroleum Institute **PROJECT NO.: 472A-114**

EFFECTIVE DATE: March 8, 2005

AMENDMENT: Page 2:

Experimental Start Date (OECD): March 24, 2005 ADD: Proposed Dates:

Experimental Start Date (EPA): March 25, 2005

Experimental Termination Date: March 29, 2005

Test Concentrations:

1000 mg/L

REASON: This information was not available at the time the protocol was signed by the

Study Director.

AMENDMENT: Experimental Design, Page 3, 1st Paragraph:

Generally, each concentration of the test material used in the definitive test will DELETE:

be at least 50% of the next higher treatment, unless information concerning the concentration-effect curve indicates that a different dilution factor is more

appropriate.

REASON: Because the test will be run at a single limit concentration, discussion of dilution

factors becomes irrelevant.

AMENDMENT: Experimental Design, Pages 3 and 4:

CHANGE: The green algae, Selenastrum capricornutum will be exposed to a geometric

series of at least five water accommodated fraction (WAF) loading rates and a

negative (dilution water) control for 96 hours.

The green algae, Selenastrum capricornutum will be exposed to a single TO:

accommodated fraction (WAF) loading rate and a negative (dilution water)

control for 96 hours.

CHANGE: Twelve replicates in the control and treatment groups will be tested.

TO: Twenty-four replicates in the control and treatment group will be tested.

REASON: A limit test will be conducted.

Project Number 472A-114 Page 2 of 5

Wildlife International, Ltd.

AMENDMENT: Experimental Design, Page 4, 2nd Paragraph:

CHANGE: EL50 values (i.e., the theoretical loading rate that produces a 50% reduction in

the measured parameter) will be calculated, if possible, for each 24-hour interval

of the test.

TO: Percent inhibition measured in the biological parameters will be used to

determine whether the EL50 values at each time interval are greater than or less

than the 1000 mg/L WAF loading rate used in the test.

REASON: EL50 values cannot be calculated in a limit test. Therefore, the response

observed in the treatment group will provide a relative indication of where the

EL50 might lie.

AMENDMENT: Preparation of Water Accommodated Fraction Solutions, Page 5:

CHANGE: The length of the mixing time in the definitive test will be determined based on

results of the WAF equilibration trial.

TO: The WAF mixing time will be approximately 24 hours.

REASON: The WAF equilibration trial showed no effect of mixing time on concentrations

of the analytes of interest. Therefore, it is not necessary to stir the WAF mixture

beyond 24 hours.

AMENDMENT: Environmental Conditions, Page 6:

CHANGE: At 24, 48, 72 and 96 hours, pH will be measured in pooled test solution samples

collected from the three replicates sacrificed from each treatment and control group. At test termination, pH will be measured in pooled test solution samples collected from the remaining three replicates of each treatment and control

group.

TO: At 24, 48, 72 and 96 hours, pH will be measured in pooled test solution samples

collected from the six replicates sacrificed from each treatment and control

group.

REASON: Six replicates will be sacrificed at each sampling interval.

AMENDMENT: Biological Measurements, Page 7:

CHANGE: One sample will be collected from three replicates of the treatment and control

group at 24, 48, 72 and 96 hours. At each measurement period, the three replicates will be destructively sampled (i.e. samples taken and then replicates

removed from test).

Project Number 472A-114 Page 3 of 5

Wildlife International, Ltd.

TO:

TO: One sample will be collected from six replicates of the treatment and control group at 24, 48, 72 and 96 hours. At each measurement period, the six replicates will be destructively samples (i.e. samples taken and then replicates

removed from test).

CHANGE: Samples of test solution will be collected from each of the three replicates per

treatment and control group at the end of the test.

Samples of test solution will be collected from each of the six replicates per

treatment and control group at the end of the test.

REASON: A limit test will be conducted with six replicates per sampling interval.

AMENDMENT: Sampling for Analytical Measurements, Page 8:

CHANGE: Replace the entire section with the following.

TO: Water samples will be decanted from each WAF preparation vessel at the beginning of the test, and pooled from each replicate test chamber after 72 and 96 hours of the test to determine concentrations of the compounds and elements of interest in petroleum coke (see Table 1). One set of samples will be collected and analyzed for selected organic compounds, and a second set of samples will be collected and analyzed for selected inorganic elements. Samples will be collected at mid-depth and stored with zero headspace until the end of the test. Samples for organic analyses should be preserved by storage at 4°C. Samples for inorganic analyses should be preserved by treating the sample with nitric

PROPOSED NUMBERS OF VERIFICATION SAMPLES

acid (HNO₃) to a pH of <2. The sample scheme is summarized below:

Experimental Group	0-Hours 1	72-Hours ¹ (old)	96-Hours ¹ (old)
Control	2	2	2
Treatment (1000 mg/L loading)	2	2	2
	4	4	4

At each sampling interval, one set of samples will be collected and analyzed for selected organic compounds, and a second set of samples will be collected and analyzed for selected inorganic elements.

Total Number of Verification Samples = 12

Project Number 472A-114 Page 4 of 5

Wildlife International, Ltd.

The above numbers of samples represent those collected from the test and do not include quality control (QC) samples such as matrix blanks and fortifications prepared and analyzed during the analytical chemistry phase of the study. At the discretion of the Study Director, water samples from one or more appropriate test chambers will be collected and analyzed if an analytical error in sampling or analysis is suspected. The reason for the additional samples will be documented in the raw data and summarized in the final report.

REASON:

The change to a limit test necessitated a revision in the numbers of samples

collected for analytical verification.

AMENDMENT: Data Analysis, Page 10:

CHANGE:

EL50, E_bL50 values and E_rL50 values will be determined, when possible, using linear interpolation (7) or other suitable techniques with treatment response (cell density, biomass and growth rate) and WAF loading rate data. All values will be based on nominal loading rates used in the test.

A no-observed-adverse-effect level (NOAEL) will be selected at 72 and 96 hours based on an evaluation of the concentration-response pattern and the results of the statistical analyses of the cell density, biomass and growth rate data at 72 and 96 hours. Statistically significant differences between the control and the treatment groups will be identified using analysis of variance (ANOVA) and a test to compare treatment mean responses to the control response (e.g., Dunnett's test or Bonferroni's t-test). Data will be assessed for normality and homogeneity of variances prior to performing the ANOVA. Transformations will be used to correct any condition of non-normality or unequal error variances, when possible. Additional analysis of data may be conducted if deemed appropriate by the Study Director. The results of the analysis will be documented in the raw data and summarized in the final report. Statistical comparisons for the ANOVA and the comparison of mean responses will be carried out using SAS System for Windows software (8) or equivalent.

TO:

In the definitive limit test, the percent inhibition obtained at the limit concentration will be used to determine if the 72 and 96-hour EL50 concentrations are greater than or less than the nominal limit WAF loading rate.

REASON:

Because the test will be run at a single limit concentration, statistically defined EL50 concentrations cannot be determined.

AMENDMENT: Table 12, Page 16:

ADD:

1-methylnaphthalene 2-methylnaphthalene

REASON:

The Sponsor requested the addition of these two compounds to the list of

analytes of interest.

- 83 -

Wildlife International, Ltd.

Project Number 472A-114 Page 5 of 5

3-24-05 DATE 3/18/05 DATE

Wildlife International, Ltd.

Project Number 472A-114 Page 1 of 1

AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga

(Selenastrum capricornutum)

AMENDMENT NO.: 2 PROTOCOL NO.: 472/033004/SEL-OECD/SUB472

PROJECT NO.: 472A-114 SPONSOR: American Petroleum Institute

EFFECTIVE DATE: March 18, 2005

AMENDMENT: Sampling for Analytical Measurements, Page 8 (as amended in Amendment #1):

CHANGE: Samples will be collected at mid-depth and stored with zero headspace until the

end of the test. Samples for organic analyses should be preserved by storage at 4°C. Samples for inorganic analyses should be preserved by treating the sample

with nitric acid (HNO₃) to a pH of <2.

TO: Samples will be collected at mid-depth and stored until the end of the test.

Samples for organic analyses should be preserved by storage at 4°C with zero headspace. Samples for inorganic analyses should be preserved by the addition

of sufficient nitric acid (HNO₃) to achieve a final acid concentration of 2%.

REASON: The procedures specified in Amendment #1 did not accurately reflect the

procedures to be used for the preservation of samples collected for inorganic

3-24-05 DATE

1/4/06

DATE

Planch 24, 2005

- 85 -

Wildlife International, Ltd.

Project Number 472A-114 Page 1 of 1

AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga

(Selenastrum capricornutum)

PROTOCOL NO.: 472/033004/SEL-OECD/SUB472 **AMENDMENT NO.: 3**

SPONSOR: American Petroleum Institute **PROJECT NO.:** 472A-114

EFFECTIVE DATE: February 2, 2007

AMENDMENT: Page 2:

Change Study Director to: Anne B. Sindermann, Senior Biologist

REASON: Study Director responsibilities have been reassigned by Wildlife International,

Ltd. management.

3/26/07
DATE

3/11/07
DATE

- 86 -

Wildlife International, Ltd.

Project No.: 472A-114

Page 1 of 1

DEVIATION TO STUDY PROTOCOL

STUDY TITLE:

Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga

(Selenastrum capricornutum)

PROTOCOL NO.: 472/033004/SEL-OECD/SUB472

DEVIATION NO.: 1

SPONSOR: American Petroleum Institute

PROJECT NO.: 472A-114

DATE OF DEVIATION: March 23, 2005

DEVIATION:

Individual WAF solutions were prepared in 9.5L glass bottles instead of 4L aspirator bottles with tubulation. The test solutions were siphoned from the bottom of the vessel at approximately the same level as an aspirator bottle. The

media volume used for each WAF was 9L instead of 4L.

REASON:

To achieve the volumes needed for the replications of a limit test a 9.5L vessel was required. The vessel available for the 9L volume was not an aspirator bottle with tubulation. Since the intent of the aspirator bottle with tubulation was to siphon the test solutions at a certain depth of the test solutions, a siphon was placed in the 9.5L vessel at the same depth as the tubulation of the aspirator bottle. This deviation from the protocol had no adverse impact upon the results

or interpretation of the study.

DATE

- 87 -

Wildlife International, Ltd.

Project No.: 472A-114

Page 1 of 1

DEVIATION TO STUDY PROTOCOL

STUDY TITLE:

Petroleum Coke: A 96-Hour Static-Renewal Acute Toxicity Test with the

Freshwater Algae (Selenastrum capricornutum)

PROTOCOL NO.: 472/033004/SEL-OECD/SUB472

DEVIATION NO.: 2

SPONSOR: American Petroleum Institute

PROJECT NO.: 472A-114

DATE OF DEVIATION: March 31, 2005

DEVIATION:

Water samples were not analyzed to determine the concentration of perylene,

one analyte of interest in petroleum coke listed in Table 1 of the protocol.

REASON:

It was determined in method development work that the analyte co-eluted with another analyte of interest, and the concentration in the water samples would not be evaluated during the definitive test. This deviation from the protocol had no

adverse impact upon the results or interpretation of the study.

DATE STORY

- 88 -

Wildlife International, Ltd.

Project No.: 472A-114

Page 1 of 1

DEVIATION TO STUDY PROTOCOL

STUDY TITLE: Petroleum Coke: A 96-Hour Toxicity Test with the Freshwater Alga

(Selenastrum capricornutum)

PROTOCOL NO.: 472/033004/SEL-OECD/SUB472 **DEVIATION NO.: 3**

SPONSOR: American Petroleum Institute **PROJECT NO.:** 472A-114

DATE OF DEVIATION: September 12, 2005

DEVIATION: The summary of the water analysis for selected organic and inorganic

constituents that was included in the study report was from the most recent water analysis, but was not from the most recent GLP-compliant analysis, as

indicated in the protocol.

REASON: The periodic water analyses are no longer conducted under GLP Standards. The

> most recent GLP-compliant analysis was conducted in 2002. The most recent non-GLP analysis conducted in 2004 was included in the report since it was considered to be more representative of the dilution water used in the test. This

deviation from the protocol had no adverse impact upon the results or

interpretation of the study.

DATE

Og June OG

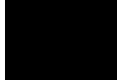
- 89 -

Appendix 3

Test Article Selection

- 90 -

THE FACE CONSULTANTS INC.
Post Office Box 53473 Houston, Texas 77052 853/351-7800 Fax 853/351-7887
A Member of Jacobs Engineering Group


February 22, 2001

American Petroleum Institute 1220 L Street, NW Washington, D.C. 20005-4070

Attached is Pace's report covering Task 1 and 2 entitled "U.S. Delayed Coker Petroleum Coke Quality Survey 1998-1999."

We would be pleased to answer any questions concerning this work for API. Please contact me at 832/351-7811 or email

For PACE

Attachment

U.S. DELAYED COKER PETROLEUM COKE QUALITY SURVEY 1998-1999

INTRODUCTION

In 1998 the United States Environmental Protection Agency (EPA) challenged chemical producers and importers to provide voluntarily basic toxicity information on their high production volume (HPV) chemicals, defined as those chemicals which are produced in or imported to the U.S. in amounts greater than 1 million pounds per year. The goal of the HPV Challenge Program is to ensure that the American public has access to basic information about the hazards associated with chemicals manufactured and used in the greatest quantities in the United States. It is designed to generate the complete hazard screening data for HPV commercial chemicals.

The American Petroleum Institute (API) serves as administrator of the Petroleum HPV Testing Group, a consortium made up of 72 member companies from API, the National Petrochemical & Refiners Association (NPRA), the Gas Producers Association (GPA) and the Asphalt Institute. These companies represent 92% of the nation's refinery capacity. The Petroleum HPV Testing Group has sponsored 396 substances produced and used by the nation's petroleum industry to meet the EPA's HPV challenge.

Pace was retained by the API HPV Testing Group to assist in identifying potential sources of U.S. petroleum coke samples that could be used in the HPV testing program. As the first step in this process, Pace undertook a review of its quarterly petroleum coke production data to help characterize current U.S. petroleum coke production qualities. Pace has now completed the review of its 1998 and 1999 quarterly petroleum coke production data for all U.S.-based delayed cokers. The results of this review are discussed below.

METHODOLOGY

Pace's petroleum coke production database was used to determine quality characteristics of petroleum coke produced by U.S. refineries. Pace has conducted a survey of U.S. petroleum coker production on a quarterly basis since the second quarter of 1983. Refineries provide the bulk of the data, but some data are also gathered from other market participants. These data are maintained in a database from which the 1998 and 1999 quarterly data were extracted for this study. It was decided that data analysis would concentrate on delayed cokers (excluding needle cokers) since for 1999 our delayed coker data set includes 92+% of all the petroleum coke produced in the United States. Accordingly, fluid and Flexicokers¹ were removed from the data set.

Needle cokers were removed from the delayed coker database because needle cokers represent a special subset of delayed coking production. Needle coke differences include:

THE PACE CONSULTANTS INC.

¹ Flexicoke is a proprietary coking process developed by Exxon. It involves partially gasifying fluid coke.

- 1. Needle coke quality is much higher than other delayed coke
- 2. Needle coke is produced using different feedstock & coking operational procedures because it is a product, not a by-product like other delayed cokes
- 3. The quantity of needle coke produced is very small
- Needle coke is handled very carefully due to its high price (typically > \$350/metric ton)

SUMMARY AND DATA ANALYSIS

These data were analyzed to determine the ton-weighted average petroleum coke qualities of sulfur (wt%), nickel (ppm), vanadium (ppm), and volatile material (wt%). All data are presented on a dry basis. The results are presented in Table 1 below.

TABLE 1

U.S. DELAYED PETROLEUM COKE QUALITY SUMMARY TON-WEIGHTED QUARTERLY AVERAGES												
Sulfur, Wt%		Nickel,	Nickel, ppm		n, ppm	Vol. Mat., Wt%						
Quarter	1998	1999	1998	1999	1998	1999	1998	1999				
1Q	4.15	4.11	286	275	758	801	10.9	10.5				
2Q	4.22	4.22	277	283	811	821	10.8	11.0				
3Q	4.21	4.21	277	282	811	857	10.9	10.9				
40	4.21	4.22	282	276	854	852	10.7	10.9				
Ton-Wt Ava	4.20	4.19	280	279	809	833	10.8	10.8				

Ton-weighted average qualities for each quarter were calculated in the following manner:

Σ, (quality value)_{delayed coker} * (quarterly production)_{delayed coker}

Total quarterly production

Where:

quality value = sulfur, vanadium, nickel or volatile content of petroleum coke produced by each delayed coker

quarterly production = petroleum coke produced by that delayed coker

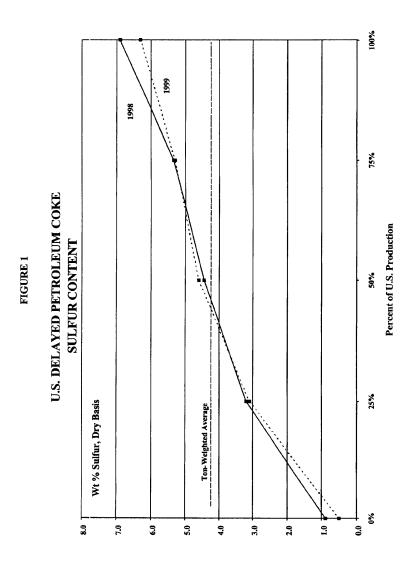
THE PACE CONSULTANTS INC.

-2-

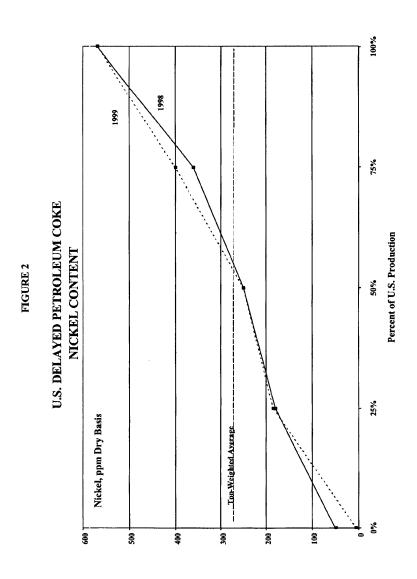
Pace next reviewed the data to determine a ton-weighted frequency distribution for each of the qualities listed. The results of this analysis are presented in Table 2 and in Figures 1 through 4.

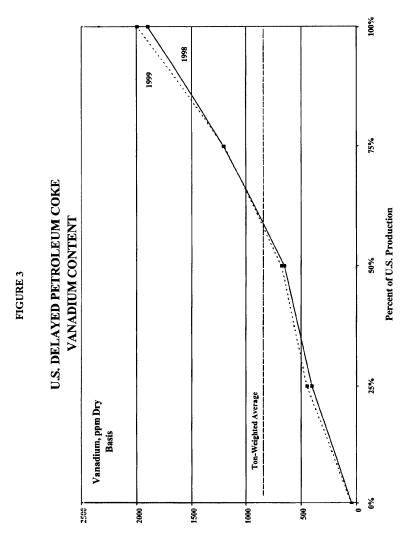
TABLE 2

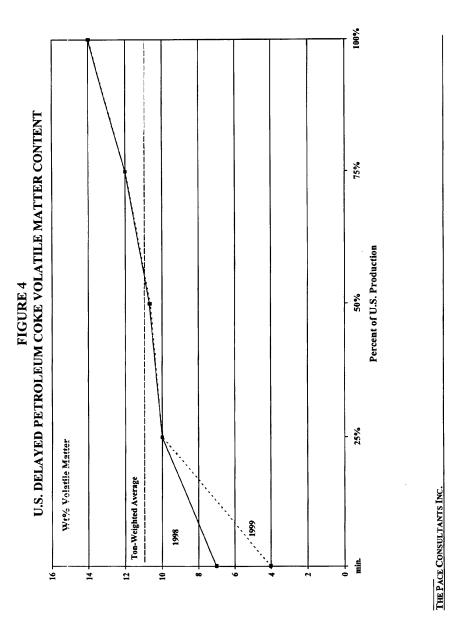
	U.S. DELAYED PETROLEUM COKE QUALITY SUMMARY BY PRODUCTION QUARTILE												
Cumulative Production	Sulfur, 1998	Wt% 1999	Nickel, 1998	ppm 1999	Vanadiur 1998	n, ppm 1999	Vol, \ 1998	Vt% 1999					
min.	0.90	0.50	50	5	45	45	7.0	4.0					
25%	3.20	3.10	180	185	400	445	10.0	10.0					
50%	4.45	4.60	250	250	650	675	10.7	10.7					
75%	5.34	5.30	360	400	1205	1200	12.0	12.0					
100%	6.90	6.30	568	568	1900	2000	14.0	14.0					


Quality quartiles for each year were calculated in the following manner:

Annual data were sorted according to each specific quality value (e.g., sulfur, vanadium, nickel, and volatile content) and the cumulative production of petroleum coke by delayed coker was calculated. Quartiles were then calculated for the annual production total, and the quality value at the cumulative total that equaled each quartile was used to determine the quality for that quartile.


TRENDS


Comparing the ton-weighted averages to the 50% production quartile (i.e., the median) reveals the following trends:


- The weighted average nickel and vanadium content of U.S. delayed petroleum coke is higher than the median. This is a direct result of the increasing amount of heavy crudes, particularly Mexican and Venezuelan crudes, processed by U.S. refineries. Because these crudes produce petroleum cokes with nickel and vanadium contents that are significantly above the median, they skew the weighted average away from the median.
- Ton-weighted sulfur content is slightly below the median because some cokers produce
 petroleum cokes that are well below the median sulfur content (i.e., anode-grade coke
 which is calcined and primarily used to make anodes for the aluminum smelting
 industry).

THE PACE CONSULTANTS INC.

- The sulfur content at the upper and lower ends of the quality spectrum was better in 1999 than in 1998. We believe the lower sulfur content in 1999 was a result of crude production cut-backs by OPEC (Organization of Petroleum Exporting Countries) and other crude oil producers. These producers preferentially reduced the production of their lower quality crude oils in order to minimize the production reductions of their higher quality (i.e. higher priced) crude oils. We see 1999 as an aberration in the general trend of increasing sulfur content in U.S. petroleum cokes.
- We expect the metals content and sulfur content of U.S. petroleum coke will deteriorate beginning in 2001 as new U.S. cokers scheduled to begin operations in the 2000-2002 time frame start up.
- The average volatile matter content is essentially equal to the median.

RECOMMENDATIONS

Pace identified candidate refineries for sampling based on the quality data from the third quarter of 2000, which is the most recent quarter for which data are available. It should be noted that these data may vary slightly from the 1998-1999 averages as increasing amounts of heavy crude are processed. Based on these data, Pace recommends the following candidates for sampling in support of the Petroleum HPV Testing Program:

PETROLEUM HPV TESTING PROGRAM DELAYED PETROLEUM COKE SAMPLE CANDIDATES										
		idate A		idate B	Candidate C					
	Value	Percentile	Value	Percentile	Value	Percentile				
Sulfur, Wt%	6.00	93	5.75	86	5.50	80				
Nickel, ppm	500	90	300	58	250	50				
Vanadium, ppm	1,500	84	1,200	75	1,000	65				
Volatiles, Wt%	10.00	25	12.00	75	13.00	88				

PETROLEUM HPV TESTING PROGRAM DELAYED PETROLEUM COKE SAMPLE CANDIDATES										
		Idate D		ndidate E						
	Value	Percentile	Value							
Sulfur, Wt%	4.20	43	5.	50 80						
Nickel, ppm	250	50	3	50 67						
Vanadium, ppm	1,500	84	1,1	00 70						
Volatiles, W1%	15.00	100	10.	00 25						

THE PACE CONSULTANTS INC.

Our analysis indicates that some compromises will have to be made in obtaining a sample for the HPV program since no refinery's petroleum coke is in the upper 75th percentile in all four quality parameters we have evaluated. Additionally, we have spent some time and effort trying to find petroleum cokes which are sampled with automatic sampling equipment that has been bias tested and is operated by an independent laboratory. Unfortunately, we have found that the locations with the best sampling systems have petroleum cokes of generally better quality. Therefore, we do not believe that we will be able to find a "perfect" candidate petroleum coke.

While the sampling at the candidate refineries may not be ideal, the sampling and analysis data have been used for commercial transactions. Substantial quantities of petroleum coke from each of the candidate refineries have been sold in the petroleum coke market. Commercial transactions have relied on the laboratory results for determining quality bonus and penalties and conformance with contract quality specifications. Thus, the samples taken for the HPV study would conform to generally accepted industry sampling practice.

The sampling plan would be to have the sample analyzed for the quality parameters used in this screening analysis (i.e. sulfur, vanadium, nickel, volatile matter) as well as four other commonly tested quality parameters—gross calorific value (Btu/lb), moisture (%), ash (%), and Hardgrove Grindability Index (HGI)—to verify that the sample obtained is similar to the anticipated quality characteristics. This plan would assure that the sample submitted for detailed HPV testing conforms to our quality expectations.

We may not be able to receive authorization from a refinery to use a sample of their petroleum coke for the HPV test. Our present plan would be to approach Refineries B and C regarding obtaining a sample. In the event that these two refineries choose not to participate, then the choice would be either refinery A or E, which have high sulfur and metals but bw volatile content or refinery D, which has high vanadium and volatile matter but low sulfur content. (note: each of the five candidate refineries has a different corporate owner).

Pace requests that the HPV Committee confirm Pace's recommended plan to approach refineries B and C regarding obtaining an HPV sample. It is not necessary for the HPV committee to decide now on the preferred refinery to contact in the event that refineries B and C do not wish to participate in the program. However, we would suggest that the committee begin to think about this issue so that decisions can be made expeditiously in the event that refineries B and C choose not participate.

- 100 -

Appendix 4

AVEKA, Inc. Particle Processing Report

Date: May 29, 2003 **Make Order #:** 5369

Company Name: API

Contact Person:

Material: Green Petroleum Coke

Objective: Task 1: Hammermill, Ball-mill and Classify Petroleum Coke to a mean particle size less than 3.6 microns. Task 2: Crush and Classify petroleum coke to a mean particle size of 2 mm.

Equipment: Homoloid JT Hammermill (SN # JT-694) with 0.0093 screen

5 Gallon Ball-mill with 0.25 inch alumina media

Majac A-12 classifier

Horiba LA-910 Laser Light Scattering Particle Sizer

Marcy 4"x 6" Jaw Crusher Gilson Sonic Sieve

Receipt: Approximately 80 lbs. of material was received 3-19-03 from Federal Express. Confirmation of receipt (EPL Project Identification 1203-001) was returned upon delivery.

Storage: Petroleum coke was stored at room temperature in sealed polyethylene bags when the material was not being processed.

Processing Procedure:

The green petroleum coke showed high moisture content upon inspection. The high moisture content was indicated by condensation on the inside of the received petroleum coke bags. After consulting with Deborah Herron and Jacobs Consultancy, the material was dried according to ASTM D 3302-00 (Standard Test Method for Total Moisture in Coal).

Task 1

All processes were run at room temperature. The dried petroleum coke was then run through a Homoloid JT Hammermill (SN # JT-694) equipped with a 0.0093 screen.

The resulting hammermilled powder was loaded into 5-gallon ball mills loaded with 0.25 inch ceramic (alumina) media. The loading level in the ball mill was 27 lbs. of media with 5.5 lbs. of petroleum coke.

651-730-1729

2045 Wooddale Drive, Woodbury, MN 55125

FAX 651-730-1826

PARTICLE PROCESSING & CUSTOM RESEARCH

The mills were rotated at 36 rpm for 17.25 hours. The resulting powder had a mean particle size of 9.56 microns (Attch 1) when tested with the Horiba LA-910 in water.

The oversized petroleum coke material was removed using a Majac A-12 Classifier. The Majac was run at 1800 RPM and 8.5 cfm. The resulting particle size of the petroleum coke was a 3.3 micron mean (Attch. 2) when tested with the Horiba LA-910 in water. The Horiba LA-910 test method for the petroleum coke samples is outlined in Attch. 3.

The final yield of product was 10.5 kg of powder.

Task 2

All processes were run at room temperature. An 18" Sweco Screener was set-up with a 7 mesh (2.8 mm) top-screen and a 14 mesh (1.4 mm) bottom-screen. Petroleum coke was fed through the screener and 2-mm material was collected from between the top and bottom screen. Oversized petroleum coke was jaw crushed with a Marcy 4"x 6" Jaw Crusher and rescreened. A Gilson Sonic Sieve particle size analysis (Attch. 4) was run on the screened petroleum coke and the results showed 99.4 % of the material between 1.4 mm – 2.8 mm. Final yield was 3.3 kg of 2 mm Petroleum Coke.

Shipping

All samples were shipped UPS Ground. The following is a summary of the sample disposition.

Sample/Amount	<u>Address</u>	<u>Person</u>
200 grams of 2-3 micron particle size sample	ChevronTexaco Energy Research and Technology Corp.	Richard Dutta
	100 Chevron Way	
1	¹ Richmond, CA 94802	
i ·	Fel: 510-242-7037	

651-730-1729

2045 Wooddale Drive, Woodbury, MN 55125

FAX 651-730-1826

- 103 -

		AYEKA, INC.
	PARTI	CLE PROCESSING & CUSTOM RESEARCH
200 grams of 2 mm particle sample	ChevronTexaco Energy Research and Technology Corp. 100 Chevron Way Richmond, CA 94802	Richard Dutta
10.5 kg of 2-3 micron particle size sample	Tel: 510-242-7037 FPL Archives, Inc. 45610 Terminal Drive Sterling, Virginia 20166 703/435-8780 ext 201	Sam Busey
Remainder (slightly less than 3 kg) of 2 mm particle size sample)	EPL Archives, Inc. 45610 Terminal Drive Sterling, Virginia 20166 703/435-8780 ext 201	Sam Busey
Leftover petroleum coke material, i.e., that material not used in samples	EPI. Archives, Inc. 45610 Terminal Drive Sterling, Virginia 20166 703/435-8780, ext 201	Sam Busey

651-730-1729 **2045** Wooddele Drive, Woodbury, MN 55125

FAX 651-730-1826

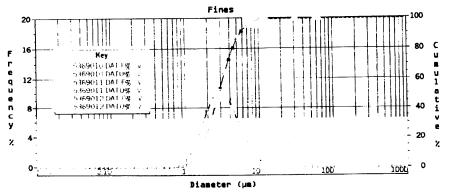
Attch 1

HORIBA LA-910 PARTICLE SIZE DISTRIBUTION DATA TABLE Standard 04/23/03 ID No: **/04/23-350 File Name: 5389001.DAT Sample Name: Ballmilled 17.25 Hours Dist. Form: STANDARD R.R. Index: co.miD Laser: 65.128 % Circulation: 2 Agitation: 7 U.Sor Lamp: 61.185 % U.Sonic ** (min) Source: American Petroleum Material: Petroleum Coke Lot No: MO5369 Test No: 5369001 Ballmilled 17-25 Hours

8			80
6	5369001.DAT F/6 - V 5369001.DATU/6 - V		- 60
4			40
2-			20
0-0.01	· · · · · · · · · · · · · · · · · · ·	100	1000

		1.5			SIZE (um)	FREQS	UNDR&	No.	SIZE (pm)	FREQ*	UNDR*
(1)	V.UZU	U.U	υ.υ	(48)	0.766	0.5	0.8	(55)	29.907	1.5	95.4
(2)	0.022	0.0	0.0	(29)	0.877	0.8	1.6	(56)	34.255	1.2	96.6
(3)	0.022	0.0	0.0	(30)	1.005	1.2	2.8	(57)	39.234	0.9	97.5
(4)	0.026	0.0	0.0	(31)	1.151	1.6	4.4	(58)	44.938	0.7	98.2
		0.0	0.0	(32)	1.319	2.0	6.3	(59)	51.471	0.5	98.8
(5)	0.034			(33)	1.510	2.3	8.7	(60)	58.953	0.4	99.2
(6)	0.039	0.0	0.0 0.0	(34)	1.729	2.6	11.3	(61)	67.523	0.3	99.5
		0.0	0.0	(35)	1.981	2.9	11.2	(62)	77.340	0.2	99.7
(8) (9)	0.051 0.058	0.0	0.0	(36)	2.269	3.0	17.2	(63)	88.582	0.2	99.9
			0.0	(37)	2.599	3.2	20.4	(64)	101.460	0.1	100.0
(10)	0.067	0.0			2.976	3.5	23.9	(65)	116.210	0.0	100.0
(11)	0.076	0.0	0.0	(38)		3.7	27.7	(66)	133.103	0.0	100.0
(12)	0.087	0.0	0.0	(39)	3.409			(67)	152.453	0.0	100.0
(13)	0.100	0.0	0.0	(40)	3.905	4.0	31.6		174.616	0.0	100.0
(14)	0.115	0.0	0.0	(41)	4.472	4.3	35.9	(68)	200.000	0.0	100.0
(15)	0.131	0.0	0.0	(42)	5.122	4.6	40.6	(69)	229.075	0.0	100.0
(16)	0.150	0.0	0.0	(43)	5.867	5.1	45.6	(70)		0.0	100.0
(17)	0.172	0.0	0.0	(44)	6.720	5.5	51.2	(71)	262.376 300.518	0.0	100.0
(18)	0.197	0.0	0.0	(45)	7.697	5.9	57.0	(72)	344.205	0.0	100.0
(19)	0.226	0.0	0.0	(46)	8.816	6.0	63.0	(73)	394.244	0.0	100.0
(20)	0.259	0.0	0.0	(47)	10.097	5.8	68.8	(74)	451.556	0.0	100.0
(21)	0.296	0.0	0.0	(4B)		5.4	74.2	(75)		0.0	100.0
(22)	0.339	0.0	0.0	(49)	13.246	4.8	79.1 83.3	(76) (77)	592.387	0.0	100.0
(23)	0.389	0.0	0.0	(50)	15.172	4.2		(78)		0.0	100.0
(24)	0.445	0.0	0.0	(51)		3.5	86.8			0.0	100.0
(25)	0.510	0.0	0.0	(52)		2.9	89.7	(79)		0.0	100.0
(26)	0.584	0.1	0.1	(53)		2.3	92.0	(80)			100.0
(27)	0.669	0.2	0.3	(54)	26.111	1.9	93.9	(81)	1019.510	0.0	100.0

Attch. 2


HORIBA LA-910

PARTICLE SIZE DISTRIBUTION DATA TABLE Standard 05/15/03

ID No: **/04/30-566 File Name: 5369011.DAT Sample Name: Fines Dist. Form: STANDARD R.R. Index: co.mj

Lamp: 86.338 % Dist. Mode: VOLUME Laser: 85.118 % U.Sonic OFF (min) Circulation: 3 Agitation: 7 Source: American Petroleum Test No: 5369004 Material: Petroleum Coke

Lot No: MO5369

No.	SIZE (µm)	FREQS	UNDRS	No.	SIZE (pm)	FREQS	UNDRS	No.	SIZE (pm)	FREQS	UNDR
(1)	0.020	0.0	0.0	(28)	0.766	0.2	0.2	(55)	29.907	0.0	100.0
(2)	0.022	0.0	0.0	(29)	0.877	0.5	0.7	(56)	34.255	0.0	100.0
(3)	0.026	0.0	0.0	(30)	1.005	1.0	1.7	(57)	39.234	0.0	100.0
(4)	0.029	0.0	0.0	(31)	1.151	1.7	3.5	(58)	44.93B	0.0	100.0
(5)	0.034	0.0	0.0	(32)	1.318	2.8	6.3	(59)	51.471	0.0	100.0
(6)	0.039	0.0	0.0	(33)	1.510	4.3	10.6	(60)	58.953	0.0	100.0
(7)	0.044	0.0	0.0	(34)	1.729	5.9	16.5	(61)	67.523	0.0	100.0
(8)	0.051	0.0	0.0	(35)	1.981	7.6	24.1	(62)	77.340	0.0	100.0
(9)	0.058	0.0	0.0	(36)	2.269	9.0	33.0	(63)	88.582	0.0	100.0
(10)	0.067	0.0	0.0	(37)	2.599	10.1	43.1	(64)	101.460	0.0	100.0
(11)	0.076	0.0	0.0	(38)	2.976	10.6	53.7	(65)	116.210	0.0	100.0
(12)	0.087	0.0	0.0	(39)	3.409	10.2	63.8	(66)	133.103	0.0	100.D
(13)	0.100	0.0	0.0	(40)	3.905	9.0	72.9	(67)	152.453	0.0	100.0
(14)	0.115	0.0	0.0	(41)	4.472	7.6	80.4	(68)	174.616	0.0	100.0
(15)	0.131	0.0	0.0	(42)	5.122	6.0	86.5	(69)	200.000	0.0	100.0
(16)	0.150	0.0	0.0	(43)	5.867	4.6	91.1	(70)	229.075	0.0	100.0
(17)	0.172	0.0	0.0	(44)	6.720	3.4	94.5	(71)	262.376	0.0	100.0
(18)	0.197	0.0	0.0	(45)	7.697	2.3	96.8	(72)	300.518	0.0	100.0
(19)	0.226	0.0	0.0	(46)	8.816	1.5	98.3	(73)	344,205	0.0	100.0
(20)	0.259	0.0	0.0	(47)	10.097	0.9	99.1	(74)	394.244	0.0	100.0
(21)	0.296	0.0	0.0	(48)	11.565	0.5	99.6	(75)	451.556	0.0	100.0
(22)	0.339	0.0	0.0	(49)	13.246	0.2	99.9	(76)	517.200	0.0	100.0
(23)	0.389	0.0	0.0	(50)		0.1	100.0	(77)	592.387	0.0	100.0
(24)	0.445	0.0	0.0	(51)		0.0	100.0	(78)	678.504	0.0	100.0
(25)	0.510	0.0	0.0	(52)		0.0	100.0	(79)		0.0	100.0
(26)	0.584	0.0	0.0	(53)		0.0	100.0	(80)	890.116	0.0	100.0
(27)	0.669	0.0	0.0	(54)	26.111	0.0	100.0	(81)	1019.510	0.0	100.0

- 106 -

Attch. 3

TEST METHOD FOR API PETROLEUM COKE

Sample Preparation

May 15, 2003

Mix 0.15-0.2 grams of petroleum coke with 5-6 grams distilled water. Add TX-100 surfactant to aid dispersion. Mix thoroughly until no large concentrations of sample are evident.

LA-910 Preparation

Fill the test chamber to capacity with 140 ml distilled water. Add 3-4 drops of TX-100 surfactant from a 10% concentrate source, resulting in approximately a .1% diluted total. Select the relative refractive index appropriate for this material (1.61-3.02i). Circulate the solvent using a pump speed of 2-3, subtract the background. Add the sample drop by drop until the laser transmission falls into the acceptable range (70 – 95)% transmittance. Activate the sonicator to aid dispersion, cease sonication when sample is completely dispersed.

Sample Test

Measure the sample three times. Save each measurement. Overlay the three measurements on a graph. If they appear stable, the test is complete. If not, investigate. A steady increase in the laser transmission rate indicates more particles are present from pass to pass. That indicates the sample was not completely dispersed yet. A steady decrease in the laser transmission rate indicates the sample is agglomerating, settling, or dissolving.

Report

Using the Display module, graph the three test runs over one another. A stable test will appear as one line, an unstable condition will clearly show all three runs, indicating instability. If stable, select a run (typically the middle run) and print the complete data table along with the graph.

Author:

(651) 714-4293 ext 208

AHel	ı, '

Sample ID: Americar 2mm Pet. Coke	Sample ID: American Petroleum Institute 2mm Pet Coke		Sieve Analysis			5/29/03	60/
US Standard	Mesh Opening	Sieve Weight	Sieve Weight	Weignt of	े Sample	Constitution of the consti	
Mesh Size	(Microns)	(Grams)	+ Sample (g)	Sample (g)	Above Sieve	cader Sieve	
7	2800	50.951	50 975	0 024	0.31	୫୬ ବର	
80	2360	50 741	52 146	1 405	18.18	81.51	
5	2000	48.772	51 024	2.252	29.14	52.37	
12	1700	47.324	50.173	2.849	36.86	15.51	
14	1400	48.450	49 624	1 174	15.19	0.32	
catch	D	220.018	220.043	0 025	0.32	0.90	
			Totals:	7.728	100:00		

- 108 -

Appendix 5

Laboratory Characterization of 2 mm Particle Size Petroleum Coke

- 109 -

Andly 515 REPOIL

ANALYTICAL RESULTS

Prepared for:

Chevron Products Company 940 Heneley St. Bldg. 210

> Richmond CA 94801 510-242-8191

> > Propared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 857532. Samples arrived at the laboratory on Friday, June 27, 2003. The PO# for this group is 99011184 and the release number is BEATTY.

Client Description
Pet Coke 2mm Solid Sample Pet Coke Micronized Solid Sample Lancaster Labs Number 4073301

4073302

1 COPY TO Lancaster Laboratories I COPY TO Chevron CRTC

Questions? Contact your Client Services Representative Alison M O'Comor at (717) 656-2300.

Respectfully Submitted,

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425

- 110 -

A' 10' 5004 10' 40' F

Analysis Report

Page 1 of 1

Lancaster Laboratories Sample No. SW 4073301

Collected:06/26/2003 00:00

Submitted: 06/27/2003 10:40 Reported: 07/09/2003 at 11:42

Discard: 08/09/2003 Pet Coke 2mm Solid Sample Cost Center# ENG-4066

Cost Center# ENG-40 HPV Petroleum Cake Account Number: 10863

Chevron Products Company 940 Hensley St. Bldg. 210

Richmond CA 94801

2MMPC

CAT No.	Analysis Name	CAS Muniber	As Recei Recult	ived	As Received Method Detection Limit	Units	Pilution Factor
07804	PAHs in Soil by GC/NS						
01191	Acenaphthene	83-32-9	N.D.		330.	ug/kg	10
01195	Pyrene	129-00-0	1,300.	J	330.	ug/kg	10
02751	1-Methylnaphthalene	90-12-0	2,700.	đ	330.	ug/kg	10
03761	Naphthalene	91-20-3	3,600.		330.	ug/kg	10
03763	Acenaphthylene	208-96-8	N.D.		330.	ug/kg	10
03768	Fluorene	86-73-7	340.	J	330.	ug/kg	10
03775	Phenanthrene	85-01-8	690.	J	330.	ug/kg	10
03776	Anthracene	120-12-7	N.D.		330.	ug/kg	10
03778	Fluoranthono	205-44-0	N.D.		330.	ug/kg	10
03781	Benzo(a) anthracene	56-55-3	580.	J	330.	ug/kg	10
03782	Chrysene	218-01-9	880.	J	330.	ug/kg	10
03786	Bonzo (b) fluoranthene	205-99-2	520.	J	330.	ug/kg	10
03787	Benzo(k) fluoranthene	207-08-9	N.D.		330.	ug/kg	10
03788	Benzo (a) pyrone	50-32-8	1,800.	ð	330.	ug/kg	10
03789	Indeno (1, 2, 3-cd) pyrene	193-39-5	340.	J	330.	ug/kg	10
03790	Dibenz (a, h) anthracene	53-70-3	490.	J	330.	ug/kg	10
03791	Bonzo(g, h, i)perylene	191-24-2	1,100.	J	330.	ug/kg	10
04694	2-Methylnaphthalene	91-57-6	11,000.		330.	ug/kg	10
		1-1-4-3 443-44					

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MS samivolatile compounds were raised.

State of California Lab Certification No. 2116

Laboratory Chronicle

		Deporatory	CILLU	117676		
CAT		_		Analysis		Dilution
Wo.	Analysis Mame	Mathod	TrialO	Date and Time	Analyst	Factor
07804	PARs in Soil by GC/M8	SW-846 8270C	1	07/02/2003 15:41	Susan L Schouering	10
07806	DMA Soil Extraction	SW-846 3550B	1	06/30/2003 20:00	Sally L Appleyard	1

- 111 -

Page 1 of 2

Quality Control Summary

Client Name: Chevron Products Company Reported: 07/09/03 at 11:42 AM

Group Number: 857532

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS VIEC	LCSD LREC	LCS/LCSD Limits	RED	RPO Have
Batch number: 03161SLA026	Sample n	umber(s):	4073301-40	73302				
Acenaphthene	N.D.	33.	ug/kg	91		76-109		
Pyzene	N.D.	33.	ug/kg	89		71-110		
1-Methylnaphthaleno	N.D.	33.	ug/kg	87		76-101		
Maphthalene	N.D.	33.	ug/kg	87		73-103		
Acenaphthylone	N.D.	33.	ug/kg	94		73-106		
Pluorene	M.D.	33.	ug/kg	93		66-115		
Phenanthrene	N.D.	33.	ug/kg	88		70-107		
Anthracene	N.D.	33.	ug/kg	86		71-107		
Fluoranthene	M.D.	33.	ug/kg	90		69-107		
Benzo (a) anthracene	N.D.	33.	ug/kg	93		74-107		
Chrysone	N.D.	33.	ug/kg	89		72-109		
Benzo (b) fluoranthene	W.D.	33.	ug/kg	95		71-113		
Benzo (k) fluoranthene	N.D.	33.	ug/kg	97		75-112		
Benzo (a) pyrene	W.D.	33.	ug/kg	94		79-111		
Indeno(1,2,3-cd)pyrene	N.D.	33.	ug/kg	88		74-113		
Dibenz (a, h) anthracene	w.b.	33.	ug/kg	95		81-118		
Benzo (g, h, i) perylene	N.D.	33.	ug/kg	92		74-114		
2-Methylnaphthalene	M.D.	33.	ug/kg	90		70-102		

Sample Matrix Quality Control

	308	MED	MS/MSD		RPD	MICG	DUP	DUP	Dup RPD
Analysis Name	MEC	LREC	Limite	RID	XVX	Conc	Cond	RPD	Max
Batch number: 031818LA026	Sample	number	(s): 407330	1-40733	02				
Acenaphthene	107	93	48-132	14	30				
Pyrene	82	68	28-144	12	30				
1-Methylnaphthalene	75	67*	72-100	5	30				
Waphthalene	77	61	38-132	9	30				
Acenaphthylene	108	91	46-128	18	30				
Fluorene	88	75	39-137	14	30				
Phonanthrene	88	74	29-143	13	30				
Anthracene	101	85	35-138	17	30				
Fluoranthene	81	72	19-145	11	30				
Benzo (a) anthracene	89	75	26-144	14	30				
Chrysene	101	90	23-150	9	30				
Benzo (b) fluoranthene	90	74	32-140	16	30				
Benzo (k) fluoranthene	103	68	36-143	16	30				
Benzo (a) pyrene	90	72	23-154	13	30				
Indeno(1,2,3-cd)pyrene	92	78	13-155	15	30				
Dibens (a, h) anthracene	110	86	19-163	19	30				
Benzo(g,h,i)perylene	99	83	17-152	13	30				
2-Methylnaphthalene	38	19*	32-133	6	30				

- *- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

- 112 -

Page 2 of 2

Quality Control Summary

Client Name: Chevron Products Company

Group Number: 857532

Reported: 07/09/03 at 11:42 AM

Sample Matrix Quality Control

	ME	MEED	MS/MSD		NPD	BKG	DUP	סטפ.	Dup RPD
Analysis Neme	TREC	4REC	<u> Idadto</u>	RPD	MAX	Conc	Cone	RIO	Max

Surrogate Quality Control

Analysis Name: PAHs in Soil by GC/MS Batch number: 031818LA026

	Fitrobensene-d5	2-Pluorobiphenyl	Terphanyl-dl4	
4073301	101	108	92	
4073302	101	99	84	
Blank	87	85	83	
LCS	94	92	93	
MS	105	107	86	
MSD	90	90	78	
Limits:	47-128	55-123	39-128	

*- Outside of specification

⁽²⁾ The background result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

- 113 -

AUG. 10. COUJ 10.40Am ORIV IHAN From: Sent: To: Co: Found your results. Subject: Micronized YCJ58009 RECULAR SERVICE 3030999 PETROLEUM COKE 2NM REPORTED 06/13/2003 Marked-up: 06/12/2003 by (474/0) Prj Id: GLOBETECH Test code Test Name/Element/Result Test Status Analyst Status date Test Cost 06/13/2003 \$200.00 30258 MICROWAVE DIGST/ICP PLUS REPORTED <29.61 PPM AL 300.200 PPM AS <29.61 PPM В BI <29.61 PPM BE <14.805 PPM BA <29.61 **PPM** CO <14.805 PPM CA 121.600 PPM CD <14.805 PPM FE 247.000 PPM CU <17.766 PPM CR <14.805 PPM <44.414 PPM LI <14.805 PPM MG 60.850 PPM K NA 114.600 PPM <29.61 PPM MO <29.61 PPM MN PB <29.61 PPM NI 351.700 PPM 30.300 PPM SE <29.61 PPM SB <74.024 PPM S 58060.000 PPM TI <14.805 PPM SN <44.414 PPM SI 554.600 PPM 1805.000 PPM ZN <14.805 PPM YCJ58009 REGULAR SERVICE 2mm 3030251 PETROLEUM COKE at 50-1118 REPORTED 06/09/2003 Marked-up: 06/09/2003 by Prj Id: (474/0) Test code Test Name/Blement/Result Test Status Analyst Status date Test Cost 06/09/2003 \$200.00 30258 MICROWAVE DIGST/ICP PLUS REPORTED AL 321.000 PPM <19.279 PPM AS <19.279 PPM В <9.639 PPM BI <19.279 PPM BA <19.279 PPM BE CA 178.000 PPM CD <0.639 PPM CO <9.639 PPM FE 310.000 PPM CR <9.639 PPM CU <11.567 PPM K <28.918 PPM LI <9.639 PPM MG 77.370 PPM MN <19.279 PPM MO <19.279 PPM NA 133.000 PPM PB <19.279 PPM NI 367.100 PPM <19.279 PPM SE <19.279 PPM 73920 PPM SB <48.197 PPM TI 12.910 PPM 743.200 PPM SN <28.918 PPM 1938.000 PPM ZN 12.010 PPM -Original Message--

1

Appendix 6
Freshwater Algal Medium with Supplemental Sodium Bicarbonate

- 114 -

Compound	Nomir Concent	
MgCl ₂ •6H ₂ O CaCl ₂ •2H ₂ O H ₃ BO ₃ MnCl ₂ •4H ₂ O ZnCl ₂ FeCl ₃ •6H ₂ O CoCl ₂ •6H ₂ O Na ₂ MoO ₄ •2H ₂ O CuCl ₂ •2H ₂ O Na ₂ EDTA•2H ₂ O NaNO ₃ MgSO ₄ •7H ₂ O	12.164 4.410 0.1855 0.4154 3.27 0.1598 1.428 7.26 0.012 0.300 25.50 14.70	mg/L mg/L mg/L mg/L mg/L mg/L µg/L µg/L µg/L µg/L µg/L µg/L mg/L mg/L mg/L mg/L
K ₂ HPO ₄ NaHCO ₃	1.044 50.0	mg/L mg/L

The pH was adjusted to 7.5 ± 0.1 , as necessary using 10% HCl and 0.1N NaOH, as needed.

- 115 -

Appendix 7

Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water¹

N	leasured Concentrati	ion	Measured Concentration
Component	(μg/L) Comp	ponent	(µg/L)
A11.	. 0.0000	H . 11 F . 1	. 0. 0000
Aldrin	< 0.0099	Heptachlor Epoxide	< 0.0099
Alpha BHC	< 0.0099	Malathion	< 2.0
Beta BHC	< 0.040	Merphos	< 2.0
Bolstar	< 2.0	Methoxychlor	< 0.099
Chlordane	< 0.50	Methyl Parathion	< 2.0
Coumaphos	< 3.0	Mevinphos	< 2.0
Delta BHC	< 0.0099	Mirex	< 0.050
Demeton-O	< 2.0	Naled	< 3.0
Demeton-S	< 2.0	o,p-DDD	< 0.020
Diazinon	< 2.0	o,p-DDE	< 0.020
Dichlorvos	< 2.0	o,p-DDT	< 0.020
Dieldrin	< 0.020	p,p-DDD	< 0.020
Disulfoton	< 2.0	p,p-DDE	< 0.020
Dursban (Chlorpyrifos)	< 2.0	p,p-DDT	< 0.025
Endosulfan I	< 0.0099	PCB-1016	< 0.50
Endosulfan II	< 0.042	PCB-1221	< 1.2
Endosulfan Sulfate	< 0.020	PCB-1232	< 0.89
Endrin	< 0.020	PCB-1242	< 0.50
EPN	< 4.0	PCB-1248	< 0.50
Ethion	< 2.0	PCB-1254	< 0.50
Ethoprop	< 2.0	PCB-1260	< 0.50
Ethyl Parathion	< 2.0	Phorate	< 2.0
Famphur	< 2.0	Ronnel	< 2.0
Fensulfothion	< 4.0	Stirophos	< 2.0
Fenthion	< 2.0	Telodrin	< 0.0099
Gamma BHC – Lindane	< 0.0099	Tokuthion	< 2.0
Guthion (Azinphos-methyl)	< 4.0	Toxaphene	< 0.99
HCB	< 0.099	Trichloronate	< 2.0
Heptachlor	< 0.0099	Trithion	< 2.0

¹Analyses performed by Lancaster Laboratories on samples collected on December 22, 2004.

- 116 -

Appendix 7 (continued)

Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water¹

		Metals	
Component	Measured Concentration (mg/L) Comp		Measured Concentration (mg/L)
	(8,)		(8)
Aluminum <	0.200	Magnesium	12.7
Antimony	< 0.0200	Manganese	< 0.0050
Arsenic	< 0.0100	Mercury	< 0.00020
Barium	< 0.0050	Nickel	< 0.0100
Beryllium	< 0.0050	Nitrate Nitrogen	< 0.50
Bromide	< 2.5	Nitrite Nitrogen	< 0.50
Cadmium <	0.0050	Potassium	6.64
Calcium 31.1		Selenium	< 0.0100
Chloride 6.9		Silver	< 0.0050
Chromium <	0.0050	Sodium	19.7
Cobalt <	0.0050	Sulfate	5.5
Copper	< 0.0100	Thallium	< 0.0200
Fluoride	< 0.50	Vanadium	< 0.0050
Iron	< 0.200	Zinc	< 0.0200
Lead <	0.0200		

¹Analyses performed by Lancaster Laboratories on samples collected on December 22, 2004.

- 117 -

Appendix 8

Results of WAF Equilibration Trial

Polyaromatic Hydrocarbon Analysis

Water accommodated fractions (WAFs) were analy zed for the presence of the 19 polyaromatic hydrocarbons (PAHs) after mixing for 24, 48, 72 and 96 hours. No PAHs were detected in any WAF samples. Results of PAH analyses in WAFs are presented in Wildlife International, Ltd. Project Number 472C-104.

Metals Analysis

Water accommodated fractions (WAFs) were analyzed for the presence of the six m etals and sulfur after mixing for 24, 48, 72 and 96 hours. Except for a trace of iron contam ination in one test vessel, no metals were detected in any WAF samples. Sulfur was not detected above the background level in the freshwater used. Results of the m etals analyses in WAFs are presented in Wildlife International, Ltd. Project Number 472C-105.

- 118 -

Appendix 9

The Analysis of Organic Constituents in Petroleum Coke in Freshwater Algal Medium

- 119 -

Appendix 9.1

Flowchart for the Analysis of PAH Components of Petroleum Coke in Freshwater Algal Medium

FLOWCHART FOR THE ANALYSIS OF WATER SOLUBLE COMPONENTS OF PETROLEUM COKE IN FRESHWATER ALGAL MEDIUM

Prepare samples in freshwater algal medium using volumetric flasks, volumetric pipettes, gas tight syringes and culture tubes. Freshwater algal medium served as the matrix blanks.

J

Dilute samples, as necessary, with freshwater algal medium such that the final sample concentrations fall within the calibration standard range.

 \downarrow

Transfer samples and standards to autosampler vials for analysis by either HPLC/UV or fluorescence detection.

Figure 1. Analytical method flowchart for the analysis of PAH components of petroleum coke in freshwater algal medium by HPLC.

- 120 -

Appendix 9.2

Typical HPLC Operational Parameters

INSTRUMENT:	Agilent Model 1100 High Perform ance Liquid Chromatograph					
	(HPLC) with a either an Agilent Series 1100 Variable Wavelength					
	Detector or a Jasco Model FP-1520 Fluorescence Detector					
ANALYTICAL COLUMN:	YMC-Pack ODS AM (150 mm x 4.6 mm, 3 µm particle size)					

STOP TIME: 35 minutes

FLOW RATE: 1.00 mL/minute

OVEN TEMPERATURE: 40°C

MOBILE PHASE: SOLVENT A: 0.1% H₃PO₄ SOLVENT B: CH₃CN

GRADIENT:	Time			Flow
	(<u>min)</u>	<u>%A</u>	<u>%B</u> (m	L/min)
	0.01	40.0	60.0	1.000
	1.00	40.0	60.0	1.000
	30.00	0.0	100.0	1.000
	30.10	40.0	60.0	1.000
	35.00	40.0	60.0	1.000

INJECTION VOLUME: 100 µL

Acenaphthene = 9.9 min.

Phenanthrene = 10.7 min.

Anthracene = 11.4 min.

Fluoranthene = 13.0 min.

Dibenz(a,h,)anthracene = 21.8 min.

Indeno(1,2,3-cd)pyrene = 23.1 min.

Benzo(g,h,i)perylene = 23.4 min.

Dibenzo(a,e)pyrene = 25.2 min.

Pyrene = 13.8 min.

PRIMARY ANALYTICAL

WAVELENGTHS UV = 220 nm; Fluorescence = 340 nm to 425 nm

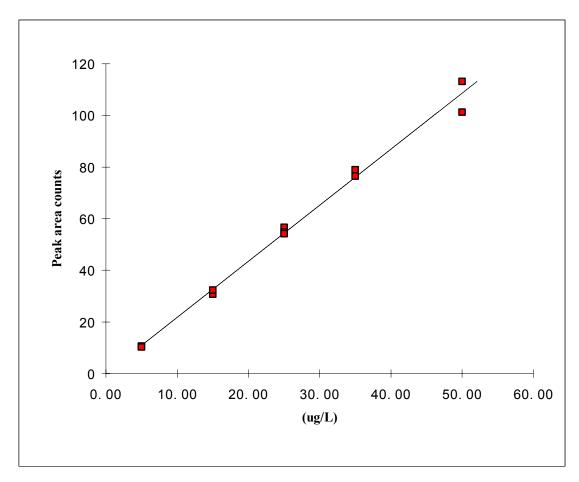
- 121 -

Appendix 9.3

Analytical Stocks and Standards Preparation

For all compounds received from AccuStandard, with the exception of Benzo(g,h,i)pery lene, Benzo(k)fluoranthene and Fluoranthene, the mass received was quantitatively transferred to a 100-mL class A volumetric flask using methanol. These primary stock solution concentrations were 0.100 m g/mL. Benzo(g,h,i)pery lene, Benzo(k)fl uoranthene and Fluoranthene were quantitatively transferred to a 200-m L class A volumetric flask using methanol. These primary stock solution concentrations were 0.05 mg/mL.

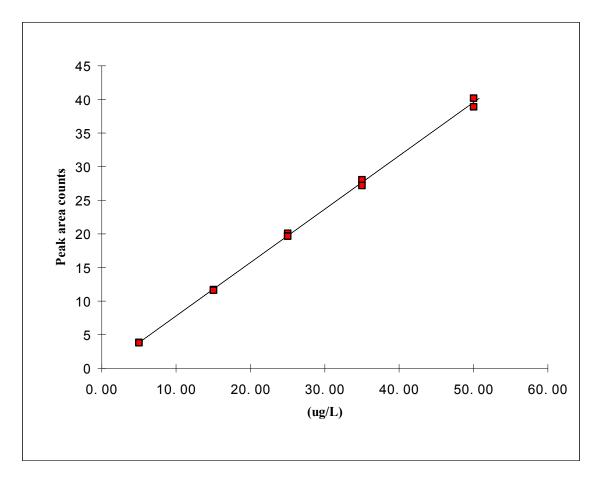
A stock of Dibenzo(a.e)py rene (received from Cambridge Isotope Labs) was prepared by weighing 0.01000 g on an analytical balance, transferred to a 100-m L class A volum etric flask and brought to volum e using tetrahy drofuran. The is primary stock solution concentration was 0.100 mg/mL.


Stocks of 2-m ethylnaphthalene and 1-m ethynaphthalene (received from Chem Service) were prepared by weighing $0.1004\,$ g and $0.01003\,$ g, respectively , on an analy tical balance. The test materials were transferred to 100-m L class A volum etric flasks and brought to volum e using methanol. These primary stock solutions contained $1.00\,$ mg/mL of the test material and were diluted in methanol to prepare $0.100\,$ mg/mL stock solutions.

Aliquots (1.00 mL) of the 0.100 mg/mL primary stocks and 2.00 mL of the 0.05 mg/L, were added to a 100-mL class A volumetric flask and brought to volum e with m ethanol. The following shows the dilution scheme for the set of calibration standards:

	Final	Standard
Aliquot	Volume	Concentration
<u>(µL)</u>	<u>(mL)</u>	$(\mu g/L)$
50.0	10.0	5.00
150	10.0	15.0
250	10.0	25.0
350	10.0	35.0
500	10.0	50.0
	(µL) 50.0 150 250 350	$\begin{array}{c c} \text{Aliquot} & \text{Volume} \\ \underline{(\mu L)} & \underline{(m L)} \\ 50.0 & 10.0 \\ 150 & 10.0 \\ 250 & 10.0 \\ 350 & 10.0 \\ \end{array}$

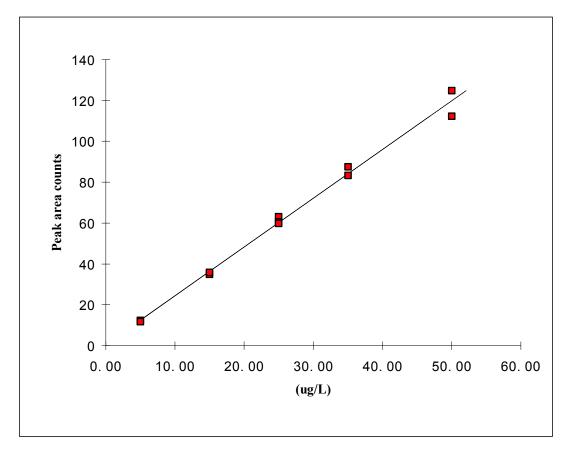
- 122 -


Appendix 9.4Calibration Curve for Naphthalene Analyzed by HPLC/UV

Slope = 2.1714; Y-intercept = 0.0560; $R^2 = 0.9920$

- 123 -

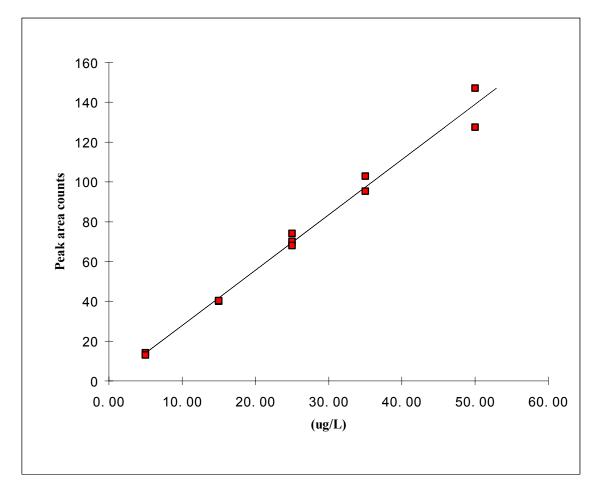
Appendix 9.5Calibration Curve for Acenaphthylene Analyzed by HPLC/UV



Slope = 0.7938; Y-intercept = -0.1343; $R^2 = 0.9991$

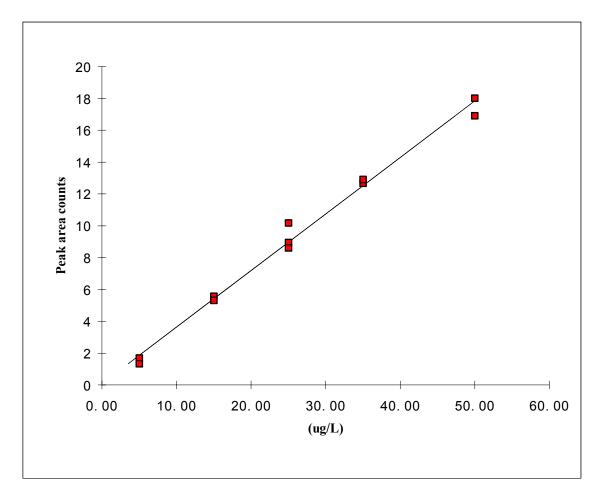
- 124 -

Appendix 9.6


Calibration Curve for 1-Methylnaphthalene Analyzed by HPLC/UV

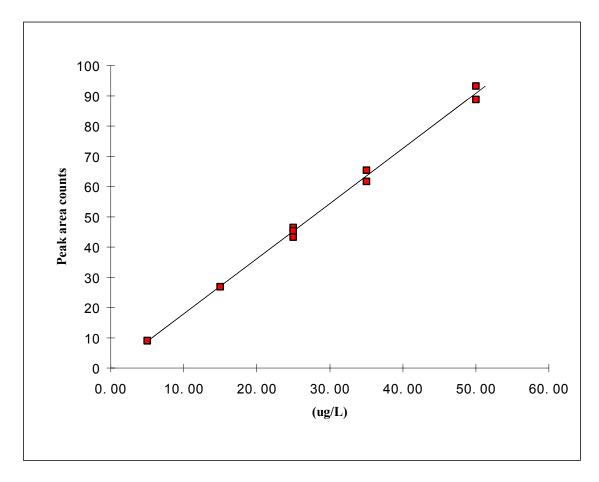
Slope = 2.3862; Y-intercept = 0.5760; $R^2 = 0.9924$

- 125 -


Appendix 9.7Calibration Curve for 2-Methylnaphthalene Analyzed by HPLC/UV

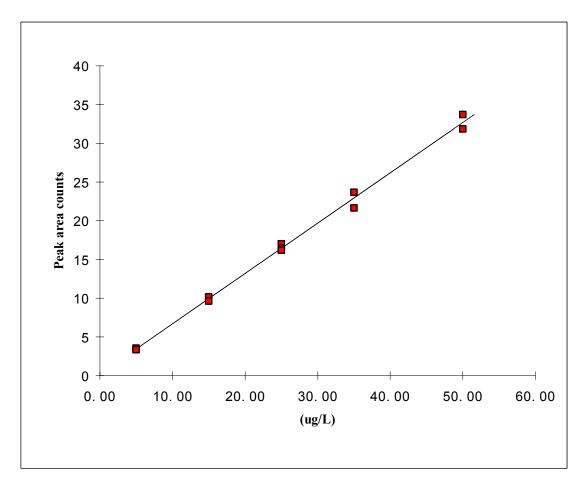
Slope = 2.7779; Y-intercept = 0.0779; $R^2 = 0.9864$

- 126 -


Appendix 9.8Calibration Curve for Fluorene Analyzed by HPLC/UV

Slope = 0.3551; Y-intercept = 0.0798; $R^2 = 0.9904$

- 127 -


Appendix 9.9Calibration Curve for Acenaphthene Analyzed by HPLC/UV

Slope = 1.8240; Y-intercept = -0.3335; $R^2 = 0.9972$

- 128 -

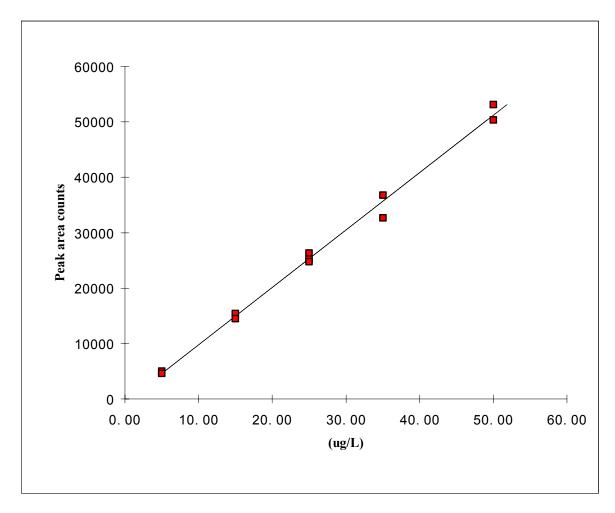
Appendix 9.10Calibration Curve for Phenanthrene Analyzed by HPLC/UV

Slope = 0.6500; Y-intercept = 0.1881; $R^2 = 0.9957$

- 129 -

Appendix 9.11

Calibration Curve for Anthracene Analyzed by HPLC with Fluorescence Detection

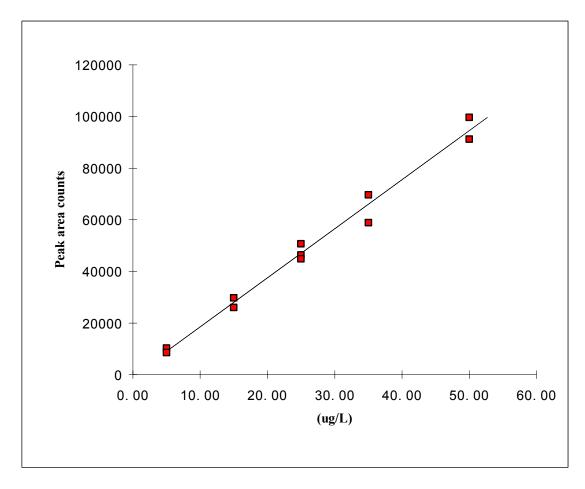


Slope = 1201.8184; Y-intercept = -266.6260; $R^2 = 0.9857$

- 130 -

Appendix 9.12

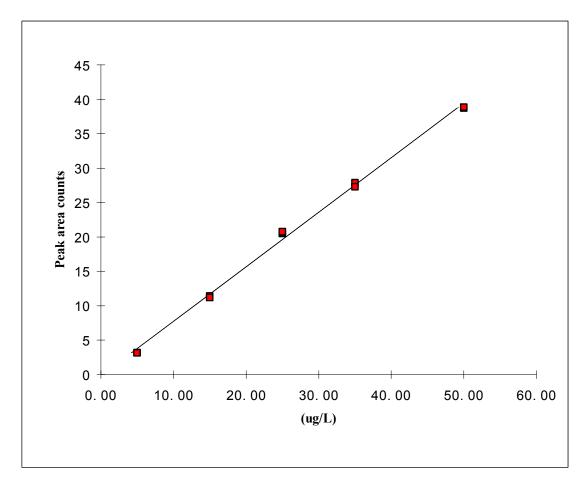
Calibration Curve for Fluoranthene Analyzed by HPLC with Fluorescence Detection



Slope = 1035.2596; Y-intercept = -558.9382; $R^2 = 0.9936$

- 131 -

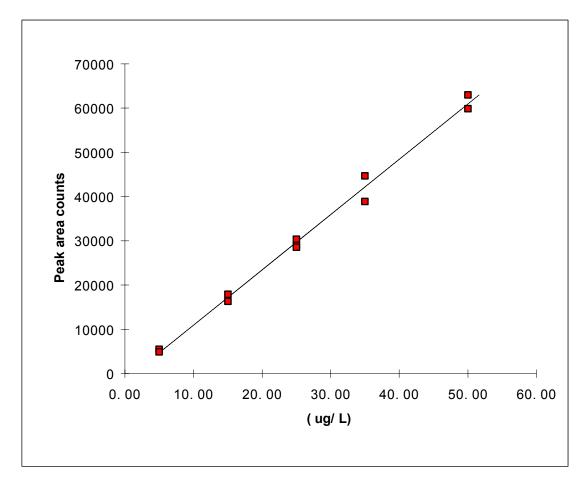
Appendix 9.13


Calibration Curve for Pyrene Analyzed by HPLC with Fluorescence Detection

Slope = 1900.5190; Y-intercept = -501.3931; $R^2 = 0.9857$

- 132 -

Appendix 9.14Calibration Curve for Chrysene Analyzed by HPLC/UV

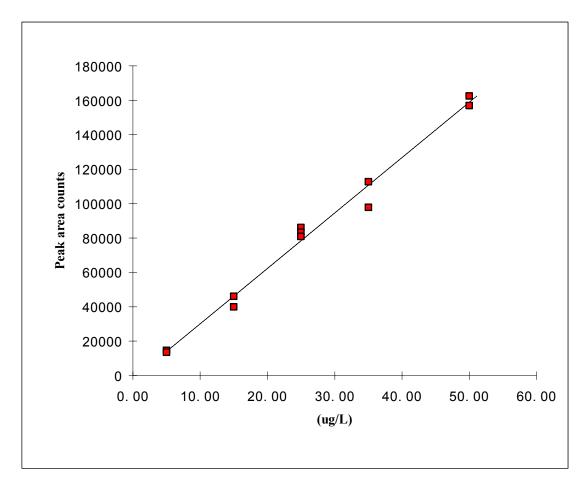


Slope = 0.7922; Y-intercept = -0.1830; $R^2 = 0.9966$

- 133 -

Appendix 9.15

Calibration Curve for Benz(a)anthracene Analyzed by HPLC with Fluorescence Detection

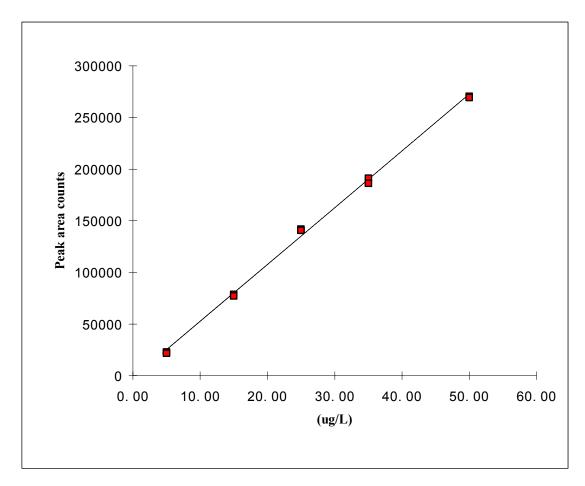


Slope = 1249.0398; Y-intercept = -1535.9726 $R^2 = 0.9932$

- 134 -

Appendix 9.16

Calibration Curve for Benzo(b)fluoranthene Analyzed by HPLC with Fluorescence Detection

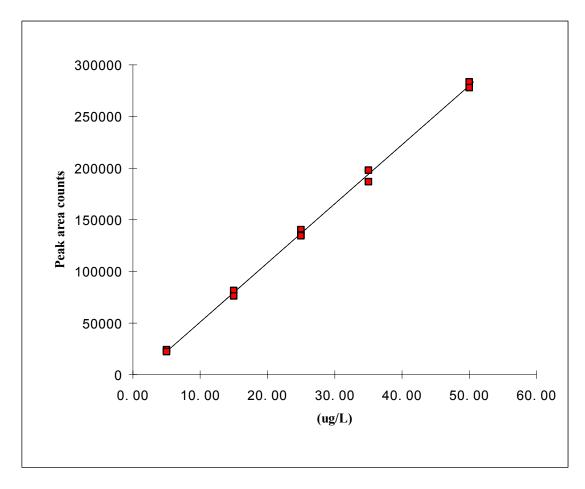


Slope = 3216.3001; Y-intercept = -2008.2201; $R^2 = 0.9877$

- 135 -

Appendix 9.17

Calibration Curve for Benzo(k)fluoroanthene Analyzed by HPLC with Fluorescence Detection

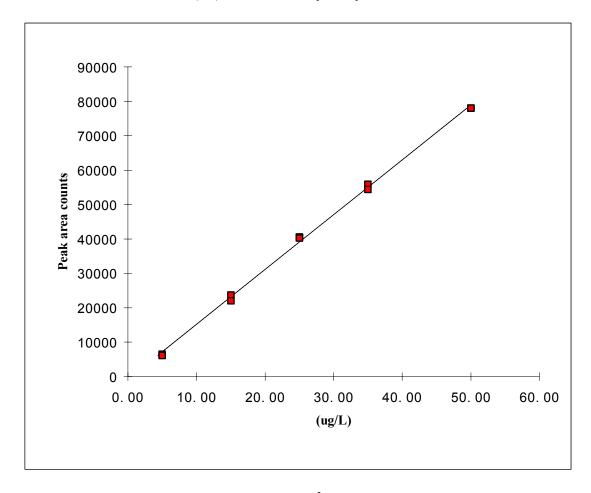


Slope = 5498.7539; Y-intercept = -2357.1609; $R^2 = 0.9976$

- 136 -

Appendix 9.18

Calibration Curve for Benzo(a)pyrene Analyzed by HPLC with Fluorescence Detection

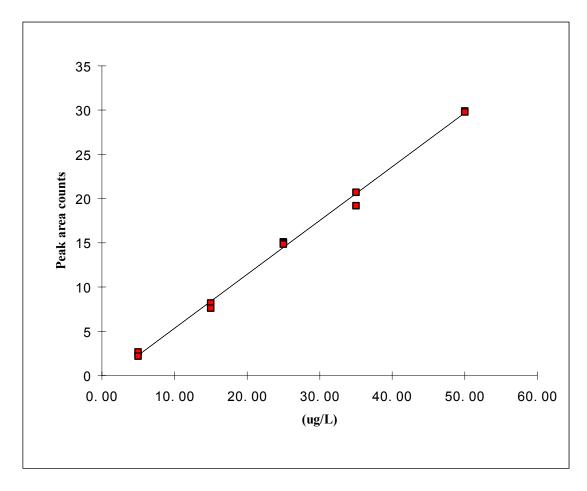


Slope = 5719.5557; Y-intercept = -6253.9436; $R^2 = 0.9984$

- 137 -

Appendix 9.19

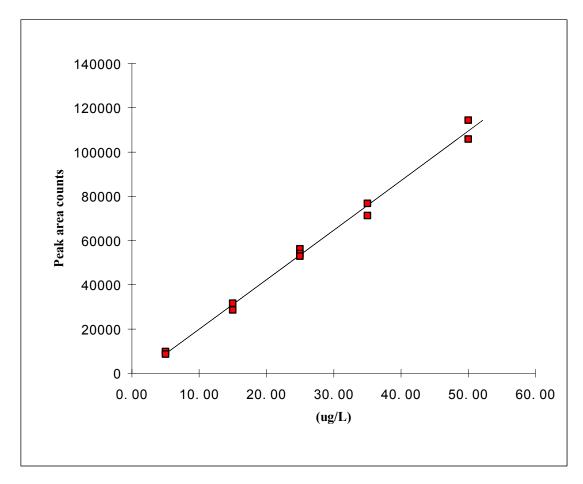
Calibration Curve for Dibenz(a,h)anthracene Analyzed by HPLC with Fluorescence Detection



Slope = 1592.8616; Y-intercept = -724.3072; $R^2 = 0.9982$

- 138 -

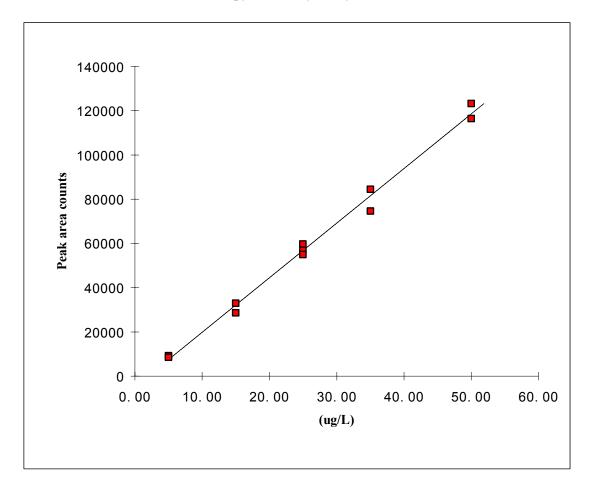
Appendix 9.20


Calibration Curve for Indeno(1,2,3-cd)pyrene Analyzed by HPLC/UV

Slope = 0.6085; Y-intercept = -0.7359; $R^2 = 0.9962$

- 139 -

 $\label{eq:Appendix 9.21} \textbf{Calibration Curve for Benzo}(g,h,i) perylene Analyzed by HPLC with Fluorescence Detection$

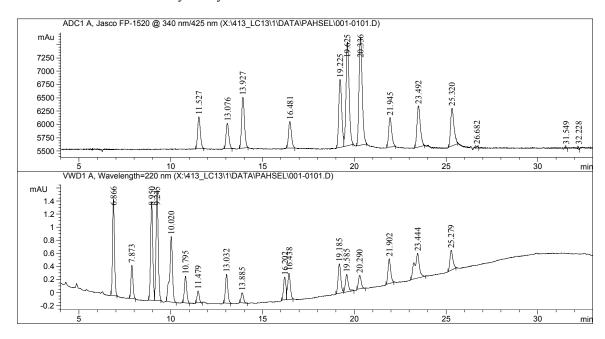


Slope = 2236.0634; Y-intercept = -2425.5273; $R^2 = 0.9939$

- 140 -

Appendix 9.22

Calibration Curve for Dibenzo(a,e)pyrene Analyzed by HPLC with Fluorescence Detection

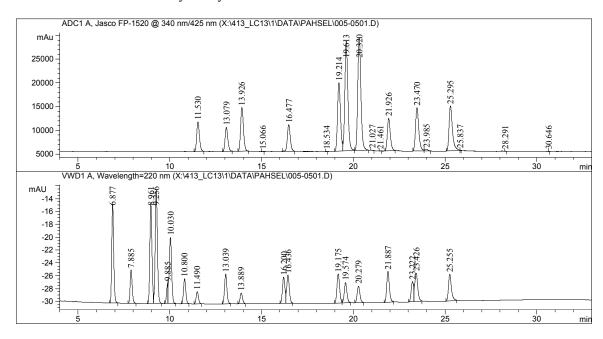


Slope = 2466.8520; Y-intercept = -4840.6442; $R^2 = 0.9926$

- 141 -

Appendix 9.23

Representative Chromatograms of a Low-level Calibration Standard Analyzed by HPLC/UV and Fluorescence Detection.

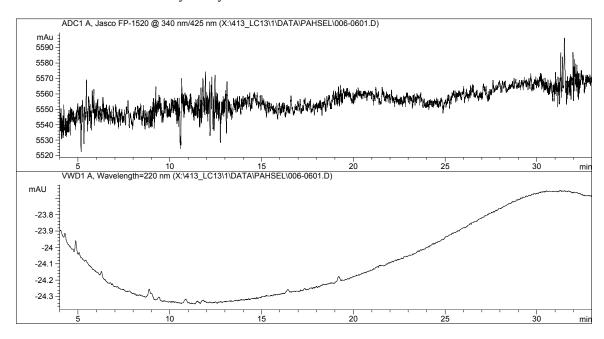


Nominal Concentration: 5.00 µg/L

- 142 -

Appendix 9.24

Representative Chromatograms of a High-level Calibration Standards Analyzed by HPLC/UV and Fluorescence Detection

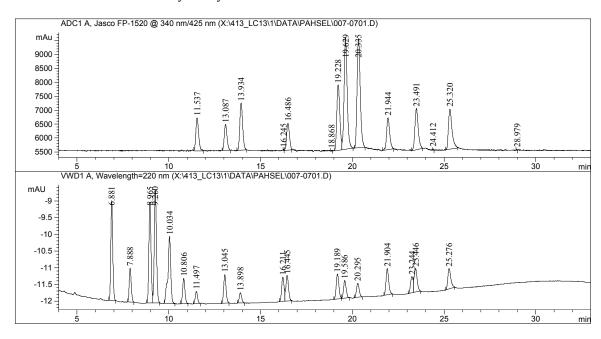


Nominal Concentration: 50.0 µg/L

- 143 -

Appendix 9.25

Representative Chromatograms of a Matrix Blank Sample Analyzed by HPLC/UV and Fluorescence Detection

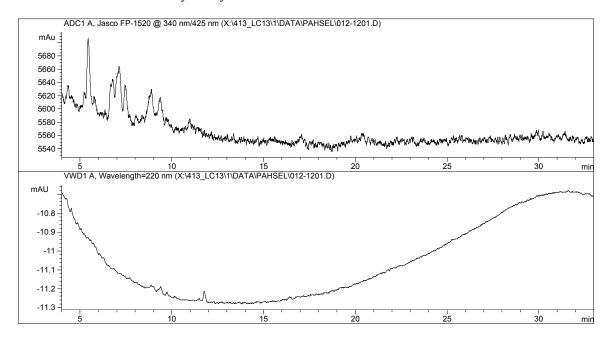


Sample Number 472A-114-MAB-1.

- 144 -

Appendix 9.26

Representative Chromatograms of a Matrix Fortification Sample Analyzed by HPLC/UV and Fluorescence Detection



Sample Number 472A-114-MAS-1. Nominal Concentration: 10.0 μg/L

- 145 -

Appendix 9.27

Representative Chromatograms of a Test Sample Analyzed by HPLC/UV and Fluorescence Detection

Sample Number 472A-114-4. Nominal Concentration: 1000 mg/L WAF.

- 146 -

Appendix 10

The Analysis of Inorganic Constituents in Petroleum Coke in Freshwater Algal Medium

- 147 -

Appendix 10.1

Analytical Method Flowchart for the Analysis of As, Cu, Fe, Ni, Se, V and S in Freshwater Algal Media Analyzed by ICP-AES

Analytical Method Flowchart for the Analysis of As, Cu, Fe, Ni, Se, V and S in Freshwater Algal Media Analyzed by ICP-AES

Prepare quality control (QC) samples concurrent with the analyses of test samples as follows:

Prepare matrix fortification samples by spiking the requisite volume(s) of the appropriate combined and/or individual element stock solution(s) directly into freshwater algal media. Perform fortifications with calibrated micropipettors and graduated centrifuge tubes.

Bring to final volume with freshwater algal media.

The matrix blank consists of unfortified freshwater algal media.

 \downarrow

Partially fill a graduated centrifuge tube with each sample. Using a calibrated micropipettor, fortify each QC and test sample with 200 μ L of concentrated nitric acid. Bring to final volume with the sample. For samples not requiring further dilution into the calibration range of the ICP-AES methodology, submit for ICP-AES analysis.

 \downarrow

For those samples requiring dilution into the calibration range of the ICP-AES methodology, perform dilutions using graduated centrifuge tubes, calibrated micropipettor(s), and 2% (v/v) nitric acid in freshwater algal media solution. Mix dilutions well and transfer into separate, labeled, 15-mL centrifuge tubes. Submit for ICP-AES analysis.

- 148 -

Appendix 10.2

Typical ICP-AES Operational Parameters for the Analysis of As, Cu, Fe, Ni, Se, V and S in Freshwater Algal Media

Instrument: Perkin-Elmer Optima 3000 DV Inductively Coupled Plasma

Atomic Emission Spectrometer (ICP-AES)

Sample Introduction System: Cetac U-5000AT⁺ Ultrasonic Nebulizer

Analytical Wavelengths: As 188.979 nm

Cu 224.700 nm
Fe 239.562 nm
Ni 231.604 nm
Se 196.026 nm
S 180.669 nm
V 292.402 nm

Plasma: Plasma Gas Flow: 15 L/min Ar

Auxiliary Gas Flow: 0.5 L/min Ar Nebulizer Gas Flow: 0.7 L/min Ar RF Power: 1300 W

Pump: Sample Flow Rate: 2.00 mL/min

Sample Flush Time: 15 sec
Wash Rate: 2.00 mL/min
Wash Time: 60 sec

Wash Frequency: Between Samples

Spectrometer: View Mode: Axial

Read Delay: 60 sec

Read Time: Min: 10.000 sec Max: 20.000 sec

Read Replicates: 3

Peak Algorithm: Peak Area

Points/Peak: 3
Background Correction: 2-Point

- 149 -

Appendix 10.3

Analytical Stocks and Standards Preparation

A combined stock solution containing the seven elements of interest was prepared either directly from the procured Spex prim ary standards, or from single element secondary stock preparations. The combined stock solutions were used to prepare external calibration standards and matrix fortification samples. Volumetric flasks and calibrated micropipettors were used for all preparations. Preparation details for the stocks were as follows:

A single component secondary stock for vanadium was first prepared from a 10x dilution of the 1.00 mg/mL V primary standard using 2% (v/v) nitric acid in reagent grade water (2:98 HNO $_3$: H_2O) dilution solvent. The nom inal concentration of the resultant vanadium stock was 0.100 m g V/mL. A com bined secondary stock in $2:98 \text{ HNO }_3$: H_2O dilution solvent was then prepared as follows:

	Primary Stock		Final	Secondary Stock
Element	Concentration	Aliquot	Volume	Concentration
	mg/mL	<u>(mL)</u>	<u>(mL)</u>	(mg/L)
As	1.00	1.00		10.0
Cu	1.00	1.00		10.0
Fe	1.00	0.500	100	5.00
Ni	1.00	0.500		5.00
Se	1.00	10.0		100
V	0.100	0.200		0.200

This combined secondary stock solution was used to prepare a set of calibration standards, each in 2% (v/v) nitric acid in Wildlife Intern ational, Ltd. freshwater algal media (2:98 HNO₃: media) dilution solvent and diluted to a 100-mL final volume, using the following dilution scheme:

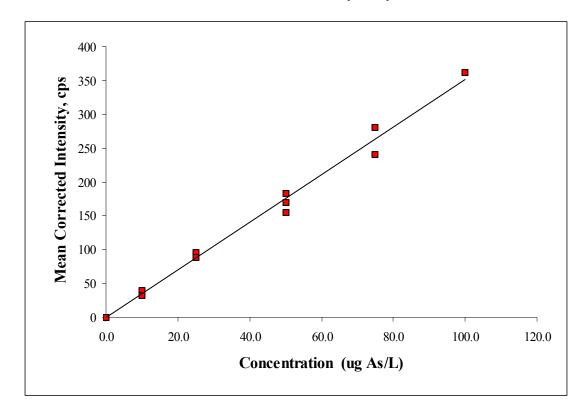
- 150 -

Appendix 10.3 (continued)

Analytical Stocks and Standards Preparation

Stock Aliquot:	0.100 mL	0.250 mL	0.500 mL	0.750 mL	1.00 mL
	Standard	Standard	Standard	Standard	Standard
Element	Concentration	Concentration	Concentration	Concentration	Concentration
	μg/L	<u>μg/L</u>	$\mu g/L$	$\mu g/L$	<u>μg/L</u>
As	10.0	25.0	50.0	75.0	100
Cu	10.0	25.0	50.0	75.0	100
Fe	5.00	12.5	25.0	37.5	50.0
Ni	5.00	12.5	25.0	37.5	50.0
Se	100	250	500	750	1000
V	0.200	0.500	1.00	1.50	2.00

A separate set of sulfur calibration standards, each in $2:98 \text{ HNO}_{3}$: media dilution solvent, were prepared from the 10.0-mg S/mL primary standard using the following dilution scheme:

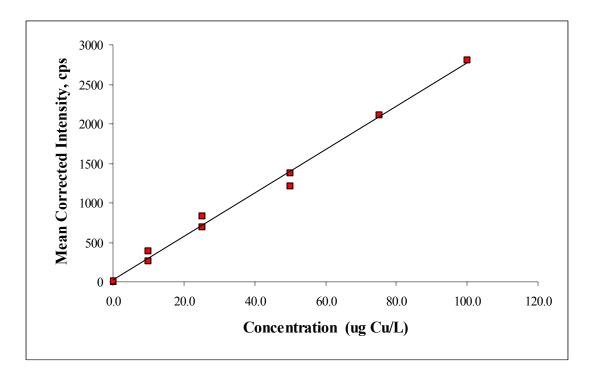

Stock		Final	Standard
Concentration	Aliquot	Volume	Concentration
mg S/mL	<u>(μL)</u>	<u>(mL)</u>	(mg S/L)
10.0	25.0	50.0	5.00
10.0	50.0	50.0	10.0
10.0	125	50.0	25.0
10.0	175	50.0	35.0
10.0	250	50.0	50.0

The 2:98 HNO 3: media dilution solvent, prepared concurrently with these calibration standards was also utilized as a calibration/reagent blank.

- 151 -

Appendix 10.4

Calibration Curve for Arsenic Analyzed by ICP-AES

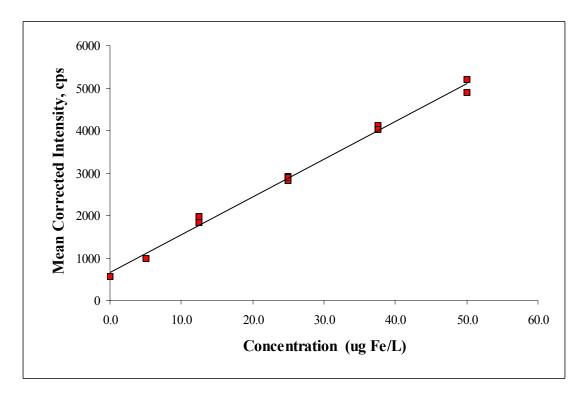


Slope = 3.5184; Y-intercept = -0.41106; $R^2 = 0.98945$

- 152 -

Appendix 10.5

Calibration Curve for Copper Analyzed by ICP-AES

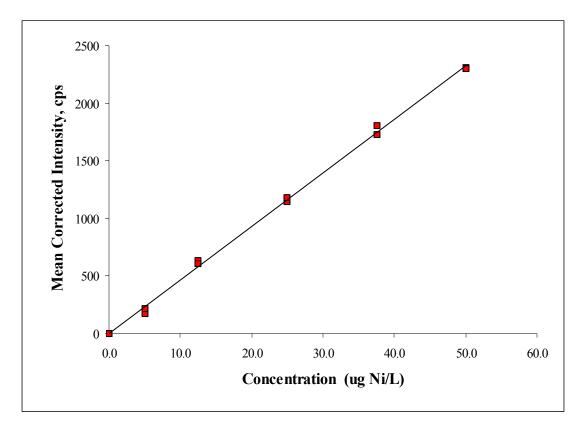


Slope = 27.460; Y-intercept = 24.417; $R^2 = 0.9916$

- 153 -

Appendix 10.6

Calibration Curve for Iron Analyzed by ICP-AES

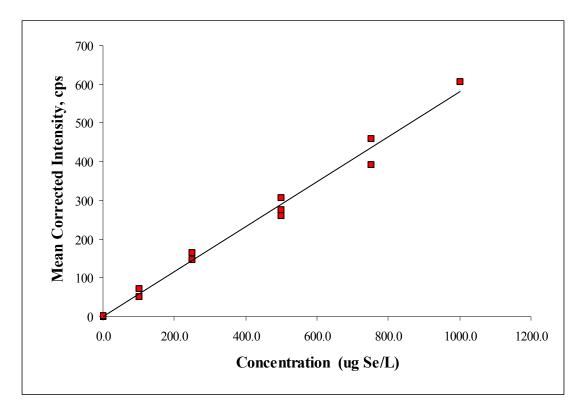


Slope = 88.909; Y-intercept = 664.867; $R^2 = 0.9939$

- 154 -

Appendix 10.7

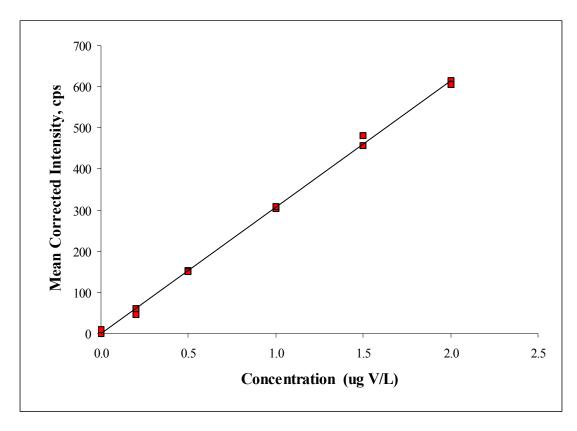
Calibration Curve for Nickel Analyzed by ICP-AES



Slope = 46.521; Y-intercept = -0.1733; $R^2 = 0.9985$

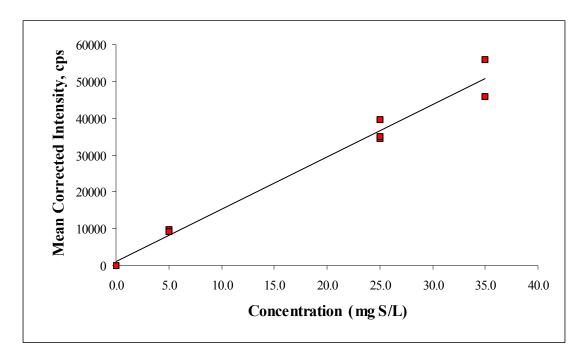
- 155 -

Appendix 10.8


Calibration Curve for Selenium Analyzed by ICP-AES

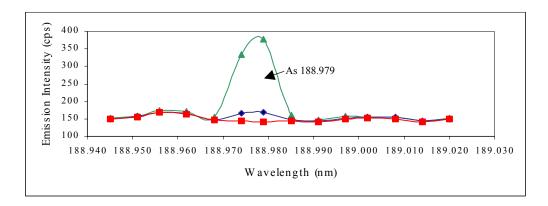
Slope = 0.5804; Y-intercept = 0.75145; $R^2 = 0.9876$

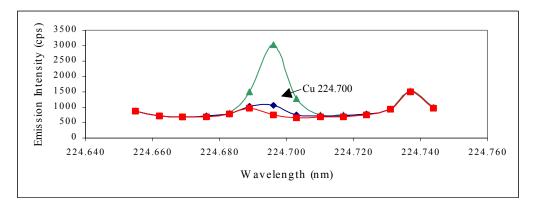
- 156 -

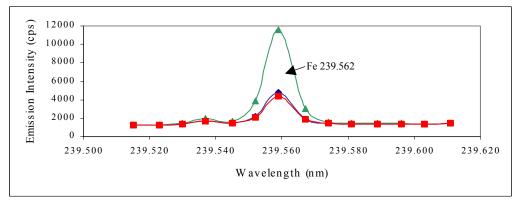

Appendix 10.9Calibration Curve for Vanadium Analyzed by ICP-AES

Slope = 307.93; Y-intercept = -0.8174; $R^2 = 0.9985$

- 157 -

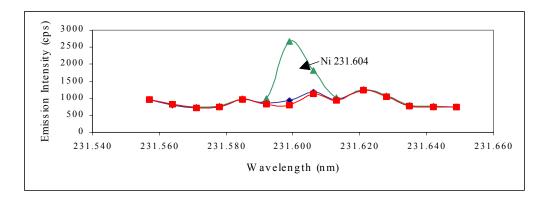

Appendix 10.10Calibration Curve for Sulfur Analyzed by ICP-AES

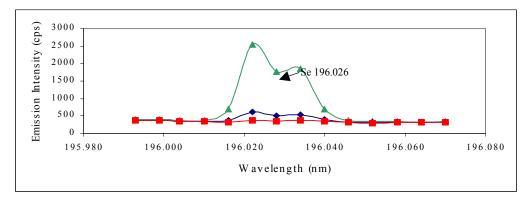


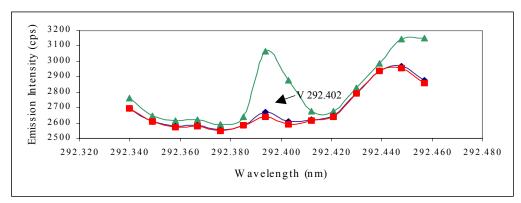

Slope = 1425.6; Y-intercept = 977.0; $R^2 = 0.9789$

Appendix 10.11

Representative Emission Spectra for Arsenic (top), Copper (middle) and Iron (bottom) in Low- and High-Level Calibration Standards Prepared in Freshwater Algal Media and Analyzed by ICP-AES

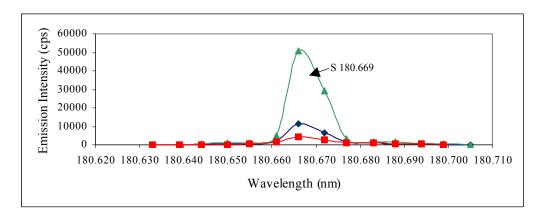



Squares = freshwat er al gal m edia cal ibration bl ank (I.D.: 472A-114-M-0); Di amonds = low-level standard (I.D.: 472A-114-M-1); Triangles = high-level standard (I.D.: 472A-114-M-5). Nominal concentrations for As, Cu and Fe = 10.0, 10.0 and 5.00 μ g/L and 100, 100 and 50.0 μ g/L, in the low- and hi gh-level standards, respectively.


- 159 -

Appendix 10.12

Representative Emission Spectra for Nickel (top), Selenium (middle) and Vanadium (bottom) in Low- and High-Level Calibration Standards Prepared in Freshwater Algal Media and Analyzed by ICP-AES



Squares = freshwat er al gal m edia cal ibration bl ank (I.D.: 472A-114-M-0); Di amonds = low-level standard (I.D.: 472A-114-M-1); Triangles = high-level standard (I.D.: 472A-114-M-5). Nominal concentrations for Ni, Se and V = 5.00, 100 and 0.200 $\mu g/L$ and 50.0, 1000 and 2.00 $\mu g/L$, in the low- and hi gh-level standards, respectively.

- 160 -

Appendix 10.13

Representative Emission Spectra for Sulfur in Low- and High-Level Calibration Standards
Prepared in Freshwater Algal Media and Analyzed by ICP-AES

Squares = freshwater algal media calibration blank (I.D.: 472A-114-S-0); Diamonds = low-level standard (I.D.: 472A-114-S-1); Triangles = high-level st andard (I.D.: 472A-114-S-5). Nom inal concent rations for S = 5.00 and 50.0 mg/L in the low- and high-level standards, respectively.

- 161 -

Appendix 10.14

Example Calculations

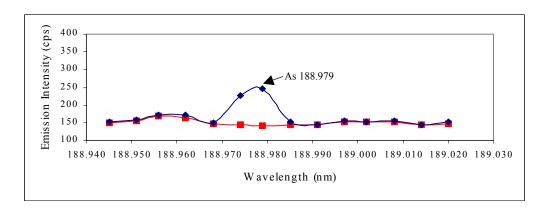
The analytical result and percent recovery for sample number 472A-114-MAS-1 for vanadium, nominal concentration of 1.00 $\,\mu$ g/L in freshwater algal m edia , were calculated using the following equations:

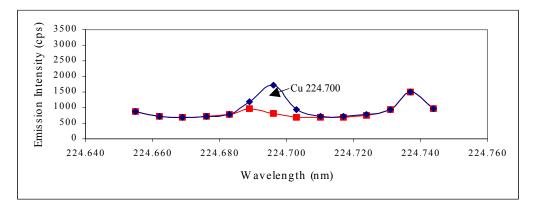
$$Vanadium \ (\mu g/L) \ in \ sample = \frac{Mean \ Corrected \ Intensity \ - \ (Y-intercept)}{Slope} \ \ X \ \ Dilution \ factor$$

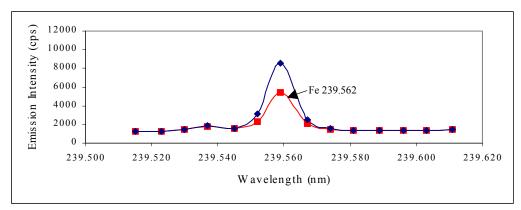
Mean Corrected Intensity = 340.9 Y-intercept = -0.8174 Slope = 307.93 Dilution Factor = 1.02

Concentration of Vanadium (
$$\mu$$
g/L) in sample = $\frac{340.9 - (-0.8174)}{307.93}$ X 1.02

Concentration of Vanadium in sample ($\mu g/L$) = 1.13

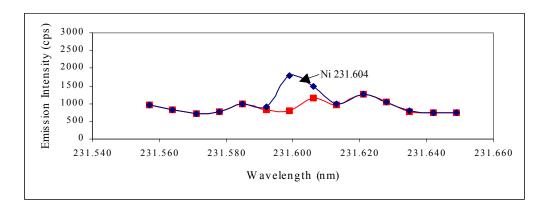

Percent of nominal concentration =
$$\frac{1.13 \; (\mu g/L)}{1.00 \; (\mu g/L)} \, X \; 100$$

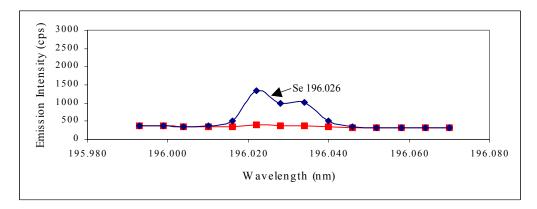

Percent of nominal concentration = 113%

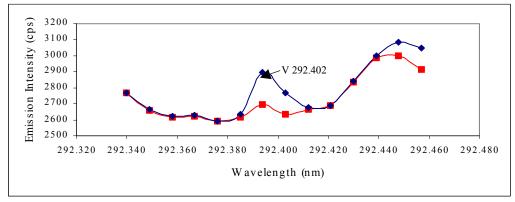

- 162 -

Appendix 10.15

Emission Spectra for Arsenic (top), Copper (middle) and Iron (bottom) in Matrix Blank and Matrix Fortification Samples Prepared in Freshwater Algal Media and Analyzed by ICP-AES

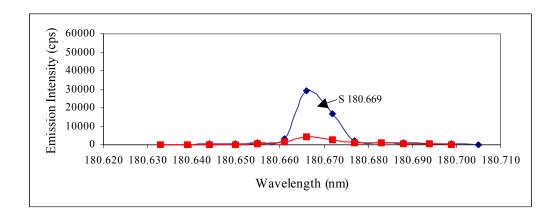





Squares = freshwater algal media matrix bl ank (I.D.: 472A-114-M AB-1, $D_f = 1.02x$); Di amonds = matrix fortification (I.D.: 472A-114-M AS-1, $D_f = 1.02x$). Nom inal concent rations for As, Cu and Fe in matrix fortification sample = 50.0, 50.0 and 25.0 μ g/L, respectively.

Appendix 10.16

Emission Spectra for Nickel (top), Selenium (middle) and Vanadium (bottom) in Matrix Blank and Matrix Fortification Samples Prepared in Freshwater Algal Media and Analyzed by ICP-AES

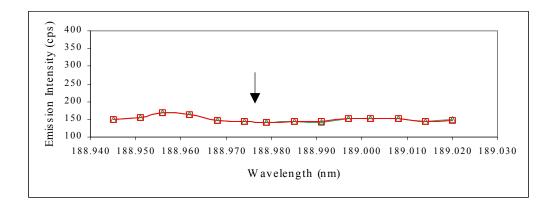


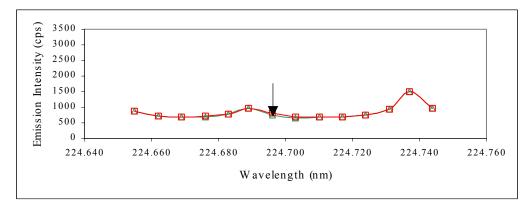
Squares = freshwater algal media matrix bl ank (I.D.: 472A-114-M AB-1, $D_{\rm f}$ = 1.02x); Di amonds = matrix fortification (I.D.: 472A-114-M AS-1, $D_{\rm f}$ = 1.02x). Nom inal concent rations for Ni , Se and V in matrix fortification sample = 25.0, 500 and 1.00 μ g/L, respectively.

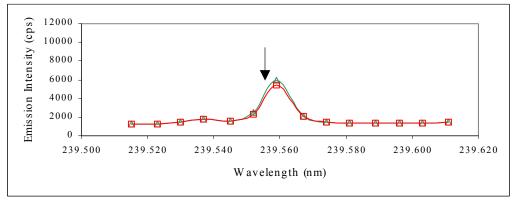
- 164 -

Appendix 10.17

Emission Spectra for Sulfur in Matrix Blank and Matrix Fortification Samples Prepared in Freshwater Algal Media and Analyzed by ICP-AES

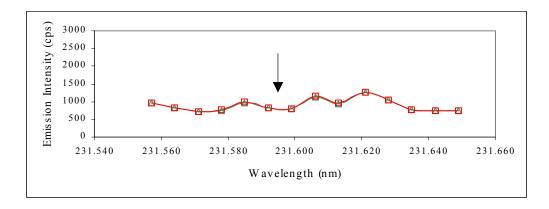


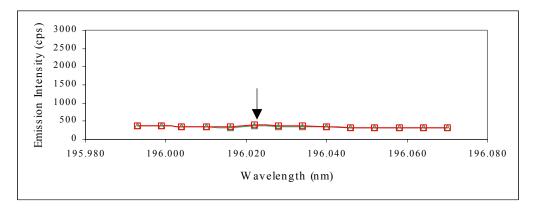

Squares = freshwater algal media matrix bl ank (I.D.: 472A-114-M AB-1, D_f = 1.02x); Di amonds = matrix fortification (I.D.: 472A-114-MAS-1, D_f = 1.02x). Nominal concentrations for S in matrix fortification sample = 20.0 mg/L.

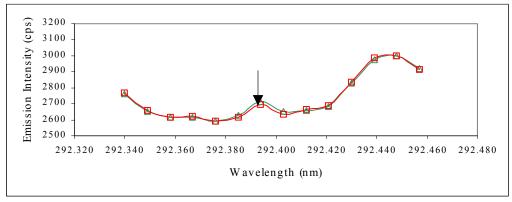

- 165 -

Appendix 10.18

Representative Emission Spectra of Arsenic (top), Copper (middle) and Iron (bottom) in a Test Sample Analyzed by ICP-AES

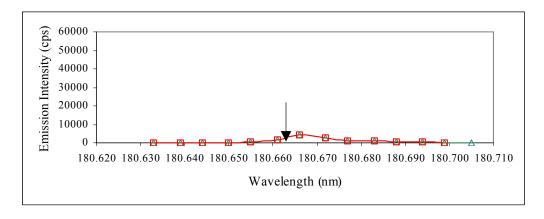





Squares = freshwater algal media calibration blank (I.D.: 472A-114-M-0); Triangles = 0 hour WAF test sample (472A-114-2, 1000 m g/L petroleum coke nom inal concentration). The arrows i ndicate expected wavelength for each element response.

Appendix 10.19

Representative Emission Spectra of Nickel (top), Selenium (middle) and Vanadium (bottom) in a Test Sample Analyzed by ICP-AES



Squares = freshwater algal media calibration blank (I.D.: 472A-114-M-0); Triangles = 0 hour WAF test sample (472A-114-2, 1000 m g/L petroleum coke nom inal concentration). The arrows i ndicate expected wavelength for each element response.

- 167 -

Appendix 10.20

Representative Emission Spectra of Sulfur in a Test Sample Analyzed by ICP-AES

Squares = freshwater algal media matrix blank (I.D.: 472A-114-MAB-1, D_f = 1.02x); Triangles = 0 hour WAF test sample (472A-114-2, 1000 mg/L petroleum coke nominal concentration). The arrow indicates the expected wavelength for sulfur response above background levels.

Appendix 11

Cell Density By Replicate Over the 96-Hour Exposure Period

- 168 -

Nominal WAF Concentration		Cell Density (cells/mL)						
(mg/L)	Rep.	24 Hours ¹	Rep.	48 Hours	Rep.	72 Hours	Rep.	96 Hours
Negative Control	A	29,000	G	73,000	M	209,000	S	490,000
В		27,000	Н	49,000	N	163,000	T	465,000
C		28,000	I	59,000	O	133,000	U	250,000
D		17,000	J	90,000	P	184,000	V	400,000
E		25,000	K	71,000	G	180,000	W	385,000
F		18,000	L	69,000	R	217,000	X	490,000
1000 A		19,000	G	35,000	M	117,000	S	420,000
В		28,000	Н	48,000	N	135,000	T	305,000
C		21,000	I	73,000	O	73,000	U	300,000
D		19,000	J	74,000	P	117,000	V	215,000
E		18,000	K	64,000	G	144,000	W	285,000
F		19,000	L	59,000	R	130,000	X	285,000

¹ The initial cell density of the stock culture was determined and an inoculum volume was administered to each test cham ber to y ield a cell density of approxim ately 5,000 cells/m L at test initiation (0 hours).

Appendix 12

Area Under the Growth Curve (Biomass) By Replicate Over the 96-Hour Exposure Period

- 169 -

Nominal WAF Concentration	Cumulative Area Under the Growth Curve							
(mg/L)	Rep.	0 - 24 Hours	Rep.	0 - 48 Hours	Rep.	0 – 72 Hours	Rep.	0 – 96 Hours
Negative Control	A 28	38,000 G		1,392,000	M	4,656,000	S	12,924,000
В		264,000	Н	1,056,000	N	3,480,000	T	10,896,000
C		276,000	I	1,200,000	O	3,384,000	U	7,860,000
D		144,000	J	1,308,000	P	4,476,000	V	11,364,000
E		240,000	K	1,272,000	G	4,164,000	W	10,824,000
F		156,000	L	1,080,000	R	4,392,000	X	12,756,000
1000	A 16	58,000 G		696,000	M	2,400,000	S	8,724,000
В		276,000	Н	1,068,000	N	3,144,000	T	8,304,000
C		192,000	I	1,200,000	O	2,832,000	U	7,188,000
D		168,000	J	1,164,000	P	3,336,000	V	7,200,000
	E	156,000	K	1,020,000 G		3,396,000	W 8,	424,000
F		168,000	L	984,000	R	3,132,000	X	7,992,000

- 170 -**Appendix 13**Growth Rate By Replicate Over the 96-Hour Exposure Period

Nominal WAF Concentration	Growth Rate							
(mg/L)	Rep.	0 - 24 Hours	Rep.	0 - 48 Hours	Rep.	0 – 72 Hours	Rep.	0 – 96 Hours
Negative Control	A	0.0732	G	0.0559	M	0.0518	S	0.0478
C	В	0.0703 H		0.0476	N	0.0484 T		0.0472
C		0.0718	I	0.0514	O	0.0456	U	0.0408
D		0.0510	J	0.0602	P	0.0501	V	0.0456
E		0.0671	K	0.0553	G	0.0498	W	0.0452
	F	0.0534	L 0.	0547	R	0.0524 X		0.0478
1000 A		0.0556	G	0.0405	M	0.0438	S	0.0462
	В	0.0718 H		0.0471	N	0.0458 T		0.0428
C		0.0598	I	0.0559	O	0.0372	U	0.0426
D		0.0556	J	0.0561	P	0.0438	V	0.0392
E		0.0534	K	0.0531	G	0.0467	W	0.0421
	F	0.0556	L 0.	0514	R	0.0453 X		0.0421

- 171 -

Appendix 14

Personnel Involved in the Study

The following key Wildlife International, Lt d. personnel were involved in the conduct or management of this study:

1.			
2.			
3.			
3.			
4.			
5.			
6.			

- 172 -

Appendix 15

Report Amendment

1. Original Report: Title Page

Amended Report: The amended report date was added and the modified study

director was changed. The total number of pages was

changed from 159 to 173.

Reason: To indicate that the report was amended, study director

change and note change in pagination.

2. Original Report: Page 2

Amended Report: The amended report date was added and new signatures and

dates were added.

Reason: To show the amended report date and to provide new

signatures and dates for the amended report.

3. Original Report: Page 3

Amended Report: The audit dates for the amended report were added and a

new signature and date were added.

Reason: To show the amended report audit dates and

to provide a new signature and date for the

amended report.

4. Original Report: Page 4

Amended Report: New signatures and dates were added.

Reason: To provide new signatures and dates for the amended

report.

5. Original Report: Page 8

Amended Report: The Table of Cont ents was updated to show the addition

of Appendix 3. A protocol am endment was added to Appendix 2 to reflect the study director change so renumbering all appendices from Appendix 3 throughout the end of the report was needed and to add the Report

Amendment appendix (Appendix 15).

Reason: The Sponsor requested that Appendix 3 be added to the

final report and the protocol am endment was required to change the study director from Debbie Desjardins to Anne

B. Sindermann.

6. Original Report: Pages 15-19 and 22-23

Amended Report: The appendix reference numbers were modified.

Reason: The Sponsor requested that Appendix 3 be added to the

final report, therefore, all appendices thereafter had to be

renumbered.

- 173 -

Appendix 15 (continued)

Report Amendment

7. Original Report:

Page 85

Amended Report:

Protocol amendment no. 3 was added to the report to reflect

the study director change.

Reason:

The Sponsor requested that Appendix 3 be added to the final report. In order to amend the final report the study director had to be modified, therefore a protocol amendment was

required.

8.

Original Report:

Pages 88-159

Amended Report:

Appendix 3 was added to the report.

Reason:

The Sponsor requested that Appendix 3 be added to the final

report.

8.

Original Report:

Page 159

Amended Report:

Reason:

Anne B. Sindermann, M.S. was added to Appendix 14. The Sponsor requested that Appendix 3 be added to the final

report. In order to amend the final report the study director

had to be changed.

AMENDMENT SIGNATURES:

H/10/2007